Abstract
In classification tasks, shape descriptions, combined with matching techniques, must be robust to noise and invariant to transformations. Most of these distortions are relatively easy to handle, particularly if we represent contours by sequences. However, starting point invariance seems to be difficult to achieve. The concept of cyclic sequence, a sequence that has no initial/final point, can be of great help. We propose a new methodology to use HMMs to classify contours represented by cyclic sequences. Experimental results show that our proposal significantly outperforms other methods in the literature.
Work partially supported by the Ministerio de Educación y Ciencia (TIN2006-12767), the Generalitat Valenciana (GV06/302) and Bancaixa (P1 1B2006-31).
Chapter PDF
Similar content being viewed by others
References
Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)
Marzal, A., Palazón, V.: Dynamic time warping of cyclic strings for shape matching. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 644–652. Springer, Heidelberg (2005)
Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Techn 14(5), 742–753 (2004)
Milios, E.E., Petrakis, E.G.M.: Shape retrieval based on dynamic programming. IEEE Transactions on Image Processing 9(1), 141–147 (2000)
Arica, N., Yarman-Vural, F.: A shape descriptor based on circular hidden markov model. In: International Conference on Pattern Recognition, vol. I, pp. 924–927 (2000)
Bicego, M., Murino, V.: Investigating hidden markov models’ capabilities in 2D shape classification. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 281–286 (2004)
Cai, J., Liu, Z.Q.: Hidden markov models with spectral features for 2D shape recognition. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1454–1458 (2001)
He, Y., Kundu, A.: 2-D shape classification using hidden markov model. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(11), 1172–1184 (1991)
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2) (1989)
Young, S., Odell, J., Ollason, D., Valtchev, V., Woodland, P.: The HTK Book. Cambridge University 1996 (1995)
Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. Ann. Math. Stat. 41, 164–171 (1970)
Juang, B.H., Rabiner, L.R.: The segmental K-means algorithm for estimating parameters of hidden markov models. IEEE Transactions on Acoustics, Speech, and Signal Processing 38(9), 1639 (1990)
Forney, G.D.: The Viterbi algorithm. Proceedings of the IEEE 61, 268–278 (1973)
Maes, M.: On a cyclic string-to-string correction problem. Information Processing Letters 35, 73–78 (1990)
Zangwill, W.I.: Nonlinear Programming. A Unified Approach. Prentice-Hall, Englewood Cliffs (1969)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Palazón, V., Marzal, A., Vilar, J.M. (2007). Cyclic Linear Hidden Markov Models for Shape Classification. In: Mery, D., Rueda, L. (eds) Advances in Image and Video Technology. PSIVT 2007. Lecture Notes in Computer Science, vol 4872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77129-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-77129-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77128-9
Online ISBN: 978-3-540-77129-6
eBook Packages: Computer ScienceComputer Science (R0)