Abstract
Magnetic Resonance Imaging (MRI) is one of the modalities for medical imaging with the fastest growth in recent years. The rapid adoption of MRI is explained by its high soft tissue sensitivity, unprecedentely high resolution and contrast for some anatomies, wide variety of contrast mechanism and functionality, high geometric flexibility, and lastly because of its innocuousness. Nevertheless there are several issues that remains challenging the scientific community. These are typically related to two linked characteristics: high cost (investment and operation) and long scans, particularly for dynamic imaging. One of the promising approachs currently investigated for reducing the scan time is under-sampling. This is a fascinating area of research in which the Nyquist sampling theorem is defied: the data is scarcely sampled in the Fourier domain and later on, reconstructed with a minimum of artefacts (aliasing, for instance). This talk will review some of the techniques currently proposed which are at different stages of applicability such as partial Fourier and key-hole, kt-BLAST, UNFOLD, Obels and Compressed Sensing. All of these employed some kind of a-priori knowledge to reconstruct fairly high quality images from data under-sampled by factors of 4, 16 and more.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Irarrazaval, P. (2007). Sampling Less and Reconstructing More for Magnetic Resonance Imaging. In: Mery, D., Rueda, L. (eds) Advances in Image and Video Technology. PSIVT 2007. Lecture Notes in Computer Science, vol 4872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77129-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-77129-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77128-9
Online ISBN: 978-3-540-77129-6
eBook Packages: Computer ScienceComputer Science (R0)