Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dense MIMO Matrix Lattices — A Meeting Point for Class Field Theory and Invariant Theory

  • Conference paper
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4851))

Abstract

The design of signal constellations for multi-antenna radio communications naturally leads to the problem of finding lattices of square complex matrices with a fixed minimum squared determinant. Since [5] cyclic division algebras, their orders and related structures have become standard material for researchers seeking to construct good MIMO-lattices. In recent submissions [3], [8] we studied the problem of identifying those cyclic division algebras that have the densest possible maximal orders. That approach was based on the machinery of Hasse invariants from class field theory for classifying the cyclic division algebras. Here we will recap the resulting lower bound from [3], preview the elementary upper bounds from [4] and compare these with some suggested constructions. As the lattices of the shape E 8 are known to be the densest (with respect to the usual Euclidean metric) in an 8-dimensional space it is natural to take a closer look at lattices of 2x2 complex matrices of that shape. We derive a much tighter upper bound to the minimum determinant of such lattices using the theory of invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1988)

    MATH  Google Scholar 

  2. Belfiore, J.-C., Rekaya, G., Viterbo, E.: The Golden Code: A 2x2 Full-Rate Space-Time Code With Non-vanishing Determinant. IEEE Trans. Inform. Theory 51(4), 1432–1436 (2005)

    Article  MathSciNet  Google Scholar 

  3. Hollanti, C., Lahtonen, J., Ranto, K., Vehkalahtid, R.: On the Densest MIMO Lattices from Cyclic Division Algebras, http://arxiv.org/abs/cs/0703052

  4. Vehkalahti, R., Lahtonen, J.: Bounds on the Density of MIMO-lattices (in preparation)

    Google Scholar 

  5. Sethuraman, B.A., Rajan, B.S., Shashidhar, V.: Full-Diversity, High-Rate Space-Time Block Codes From Division Algebras. IEEE Trans. Inform. Theory 49, 2596–2616 (2003)

    Article  MathSciNet  Google Scholar 

  6. Belfiore, J.-C., Oggier, F., Rekaya, G., Viterbo, E.: Perfect Space-Time Block Codes. IEEE Trans. Inform. Theory 52, 3885–3902 (2006)

    Article  MathSciNet  Google Scholar 

  7. Hollanti, C.: Asymmetric Space-Time Block Codes for MIMO Systems. In: 2007 IEEE ITW, Bergen, Norway (2007)

    Google Scholar 

  8. Vehkalahti, R.: Constructing Optimal Division Algebras for Space-Time Coding. In: 2007 IEEE ITW, Bergen, Norway (2007)

    Google Scholar 

  9. Elia, P., Kumar, K.R., Pawar, S.A., Kumar, P.V., Lu, H.-F.: Explicit Space-Time Codes Achieving the Diversity-Multiplexing Gain Tradeoff. IEEE Trans. Inform. Theory 52, 3869–3884 (2006)

    Article  MathSciNet  Google Scholar 

  10. Zheng, L., Tse, D.: Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels. IEEE Trans. Inform. Theory 49, 1073–1096 (2003)

    Article  MATH  Google Scholar 

  11. Reiner, I.: Maximal Orders. Academic Press, New York (1975)

    MATH  Google Scholar 

  12. Jacobson, N.: Basic Algebra II. W. H. Freeman and Company, San Francisco (1980)

    MATH  Google Scholar 

  13. Milne, J.S.: Class Field Theory, http://www.jmilne.org/math/coursenotes/

  14. Hong, Y., Viterbo, E., Belfiore, J.-C.: Golden Space-Time Trellis Coded Modulation. arXiv:cs.IT/0604063v3

    Google Scholar 

  15. Elia, P., Sethuraman, B.A., Kumar, P.V.: Perfect Space-Time Codes with Minimum and Non-Minimum Delay for Any Number of Antennas. IEEE Trans. Inform. Theory (submitted), aXiv:cs.IT/0512023

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Serdar Boztaş Hsiao-Feng (Francis) Lu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lahtonen, J., Vehkalahti, R. (2007). Dense MIMO Matrix Lattices — A Meeting Point for Class Field Theory and Invariant Theory. In: Boztaş, S., Lu, HF.(. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2007. Lecture Notes in Computer Science, vol 4851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77224-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77224-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77223-1

  • Online ISBN: 978-3-540-77224-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics