Abstract
The aim of this paper is to discuss the possibility of understanding human social interaction in web communities by analogy with a disease propagation model from epidemiology. When an article is submitted by an individual to a social web service, it is potentially influenced by other participants. The submission sometimes starts a long and argumentative chain of articles, but often does not. This complex behavior makes management of server resources difficult and a more theoretical methodology is required. This paper tries to express these complex human dynamics by analogy with infection by a virus. In this first report, by fitting an epidemiological model to Bulletin Board System (BBS) logs in terms of a numerical triple, we show that the analogy is reasonable and beneficial because the analogy can estimate the community size despite the submitter’s information alone being observable.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, T.: What is Service Science Dec-05, FRI Research Report, No.246 (2005)
Fujiki, T., Nanno, T., Suzuki, Y., Okumura, M.: Identification of Bursts in a Document Stream. In: First International Workshop on Knowledge Discovery in Data Streams (in conjunction with ECML/PKDD 2004) (2004)
Gruhl, D., Guha, R., Kumar, R., Novak, J., Tomkins, A.: The Predictive Power of Online Chatter. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 78–87. ACM Press, New York (2005)
Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information Diffusion through Blogspace. In: Proceedings of the 13th International Conference on the World Wide Web, pp. 491–501. ACM Press, New York (2004)
Jacquez, J.A.: A Note on Chain-Binomial Models of Epidemic Spread: What is Wrong with the Reed–Frost Formulation? Mathematical Biosciences 87(1), 73–82 (1987)
Kleinberg, J.: Bursty and Hierarchical Structure in Streams. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2002)
Krebs, C.J.: Ecology. Benjamin-Cummings Publishing Company (2002)
Naruse, K., Kubo, M.: Lognormal Distribution of BBS Articles and its Social and Generative Mechanism. Web Intelligence, 103–112 (2006)
Newman, M.E.: Spread of Epidemic Disease on Networks. Physical Review E 66, 016128 (2002)
Nishiura, H., Inaba, H.: Prediction of Infectious Disease Outbreaks with Particular Emphasis on the Statistical Issues Using a Transmission Model. In: Proceedings of the Institute of Statistical Mathematics, vol. 54(2), pp. 461–480 (2006) (in Japanese)
Rahmandad, H., Sterman, J.: Heterogeneity and Network Structure in the Dynamics of Contagion: Comparing Agent-Based and Differential Equation Models, MIT Sloan School of Management, Cambridge MA 02142 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kubo, M., Naruse, K., Sato, H., Matubara, T. (2007). The Possibility of an Epidemic Meme Analogy for Web Community Population Analysis. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_107
Download citation
DOI: https://doi.org/10.1007/978-3-540-77226-2_107
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77225-5
Online ISBN: 978-3-540-77226-2
eBook Packages: Computer ScienceComputer Science (R0)