Abstract
In many classification problems, some classes are more important than others from the users’ perspective. In this paper, we introduce a novel approach, weighted classification, to address this issue by modeling class importance through weights in the [0,1] interval. We also propose novel metrics to evaluate the performance of classifiers in a weighted classification context. In addition, we make some modifications to the ART classification model [1] in order to deal with weighted classification.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berzal, F., Cubero, J.C., Sánchez, D., Serrano, J.M.: ART: A hybrid classification model. Machine Learning 54(1), 67–92 (2004)
Berzal, F., Cubero, J.C., MarĂn, N., Polo, J.L.: An overview of alternative rule evaluation criteria and their use in separate-and-conquer classifiers. In: Esposito, F., RaĹ›, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, Springer, Heidelberg (2006)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)
Elkan, C.: The foundations of Cost-Sensitive Learning. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 973–978 (2001)
Drummond, C., Holte, R.: Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 239–246 (2000)
Bradford, J., Kunz, C., Kohavi, R., Brunk, C., Brodley, C.: Pruning decision trees with misclassification costs. In: Proceedings of the European Conference on Machine Learning, pp. 131–136 (1998)
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. Sigkdd Explorations 6(1), 20–29 (2004)
Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent Data Analysis Journal 6(5), 429–449 (2002)
Lavrac, N., Kavsek, B., Flach, P., Todorovski, L.: Subgruop Discovery with CN2-SD. Journal of Machine Learning Research 5, 153–188 (2004)
Blake, C., Merz, C.J.: UCI Repository of machine learning databases (1998), Available: http://www.ics.uci.edu/~mlearn/MLRepository.html
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Polo, JL., Berzal, F., Cubero, JC. (2007). Taking Class Importance into Account. In: Szczuka, M.S., et al. Advances in Hybrid Information Technology. ICHIT 2006. Lecture Notes in Computer Science(), vol 4413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77368-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-77368-9_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77367-2
Online ISBN: 978-3-540-77368-9
eBook Packages: Computer ScienceComputer Science (R0)