Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Solution for Bi-level Network Design Problem Through Nash Genetic Algorithm

  • Conference paper
Advances in Hybrid Information Technology (ICHIT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4413))

Included in the following conference series:

Abstract

This paper presents a Nash genetic algorithm (Nash GA) as a solution for a network design problem, formulated as a bi-level programming model and designs a backbone topology in a hierarchical Link-State (LS) routing domain. Given that the sound backbone topology structure has a great impact on the overall routing performance in a hierarchical LS domain, the importance of this research is evident. The proposed decision model will find an optimal configuration that consists of backbone router for Backbone Provider (BP), router for Internet Service Provider (ISP), and connection link properly meeting two-pronged engineering goals: i.e., average message delay and connection costs. It is also presumed that there are decision makers for BP and the decision makers for ISP join in the decision making process in order to optimize the own objective function. The experiment results clearly indicates that it is essential to the effective operations of hierarchical LS routing domain to consider not only the engineering aspects but also specific benefits from systematical layout of backbone network, which presents the validity of the decision model and Nash GA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moy, J.T.: OSPF - Anatomy of an Internet Routing Protocol. Addison Wesley, Reading (1998)

    Google Scholar 

  2. Parkhurst, W.R.: Cisco OSPF Command and Configuration Handbook. Cisco Press (2002)

    Google Scholar 

  3. Thomas, T., Thomas II, M.: OSPF Network Design Solutions. Cisco Press (2003)

    Google Scholar 

  4. Mukherjee, B.: Optical Communication Networks. McGraw-Hill, Inc., New York (1997)

    Google Scholar 

  5. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design. John Wiley & Sons, New York (1997)

    Google Scholar 

  6. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Optimization. John Wiley & Sons, New York (2000)

    Google Scholar 

  7. Lim, Y.T., Lim, K.W.: Game Theory and Traffic Network Problems. The Journal of Environmental Studies 42, 107–121 (2004) (in Korean)

    Google Scholar 

  8. Kim, D.H., Hyun, C.H.: Game Structure of Info-telecommunication Policy and its Dynamics. The Journal of National Basic Information System 2(4), 36–48 (1995) (in Korean)

    Google Scholar 

  9. Yun, K.L.: A Game Theoretic Analysis of the Interconnection Pricing in Network Industries, KAIST Graduate School of Management, Dissertation (1997)

    Google Scholar 

  10. Wang, J.F., Periaux, J.: Multi-point Optimization using GAs and Nash/Stackelberg Games for High Lift Multi-airfoil Design in Aerodynamics. In: Proc. of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 552–559 (2001)

    Google Scholar 

  11. Sim, K.B., Ki, J.Y., Lee, D.W.: Optimization of Multi-objective Function based on the Game Theory and Co-evolutionary Algorithm. Journal of Fuzzy Logic and Intelligent Systems 12(6), 491–496 (2002) (in Korean)

    Google Scholar 

  12. Sefrioui, M., Periaux, J.: Nash Genetic Algorithms: Examples and Applications. In: Proc. of the 2000 Congress on Evolutionary Computation, pp. 509–516 (2000)

    Google Scholar 

  13. Bertsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall, New Jersey (1992)

    Google Scholar 

  14. Elbaum, R., Sidi, M.: Topological Design of Local-area Networks using Genetic Algorithms. IEEE/ACM Transactions on Networking 4(5), 766–778 (1996)

    Article  Google Scholar 

  15. Kershenbaum, A., Van Slyke, R.: Recursive Analysis of Network Reliability. Networks 3, 81–94 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. Raidl, G.R., Julstrom, B.A.: Edge Sets: an Effective Evolutionary Coding of Spanning Trees. IEEE Transaction on Evolutionary Computation 7(3), 225–239 (2003)

    Article  Google Scholar 

  17. Gen, M., Cheng, R.: Evolutionary Network Design: Hybrid Genetic Algorithms Approach. International Journal of Computational Intelligence and Applications 3(4), 357–380 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcin S. Szczuka Daniel Howard Dominik Ślȩzak Haeng-kon Kim Tai-hoon Kim Il-seok Ko Geuk Lee Peter M. A. Sloot

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, J.R., Jo, J.B., Yang, H.K. (2007). A Solution for Bi-level Network Design Problem Through Nash Genetic Algorithm. In: Szczuka, M.S., et al. Advances in Hybrid Information Technology. ICHIT 2006. Lecture Notes in Computer Science(), vol 4413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77368-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77368-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77367-2

  • Online ISBN: 978-3-540-77368-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics