Abstract
We show that the category FinVect k of finite dimensional vector spaces and linear maps over any field k is (collectively) complete for the traced symmetric monoidal category freely generated from a signature, provided that the field has characteristic 0; this means that for any two different arrows in the free traced category there always exists a strong traced functor into FinVect k which distinguishes them. Therefore two arrows in the free traced category are the same if and only if they agree for all interpretations in FinVect k .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bloom, S., Ésik, Z.: Iteration Theories, EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)
Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997)
Hasegawa, M.: Models of Sharing Graphs: A Categorical Semantics of let and letrec. Distinguished Dissertation Series. Springer, Heidelberg (1999), also available as Ph.D. thesis ECS-LFCS-97-360, University of Edinburgh (1997)
Hyland, M., Power, A.J.: Symmetric monoidal sketches and categories of wirings. Electr. Notes Theor. Comput. Sci, vol. 100, pp. 31–46 (2004)
Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)
Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cambridge Phil. Soc. 119(3), 447–468 (1996)
Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)
Pardo, D., Rabinovich, A.M., Trakhtenbrot, B.A.: Synchronous circuits over continuous time: feedback, reliability and completeness. Fundam. Inform. 62(1), 123–137 (2004)
Rabinovich, A.M., Trakhtenbrot, B.A.: Nets and data flow interpreters. In: Proc. Fourth Symp. on Logic in Computer Science, pp. 164–174. IEEE Computer Society Press, Washington (1989)
Simpson, A.K.: Categorical completeness results for the simply-typed lambda-calculus. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 414–427. Springer, Heidelberg (1995)
Simpson, A.K., Plotkin, G.: Complete axioms for categorical fixed-point operators. In: Proc. Fifteenth Symp. on Logic in Computer Science, pp. 30–41. IEEE Computer Society Press, Washington (2000)
Soloviev, S.V.: Proof of a conjecture of S. Mac Lane. Ann. Pure Appl. Logic 90, 101–162 (1997)
Statman, R.: Completeness, invariance, and definability. J. Symbolic Logic 47, 17–26 (1982)
Ştefǎnescu, G.: Network Algebra. Series in Discrete Mathematics and Theoretical Computer Science. Springer, Heidelberg (2000)
Trakhtenbrot, B.A.: On operators, realizable in logical nets. Doklady AN SSSR (Proceedings of the USSR Academy of Sciences) 112(6), 1005–1007 (1957)
Trakhtenbrot, B.A.: On the power of compositional proofs for nets: relationships between completeness and modularity. Fundam. Inform. 30(1), 83–95 (1997)
Yetter, D.N.: Functorial Knot Theory. World Scientific, Singapore (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hasegawa, M., Hofmann, M., Plotkin, G. (2008). Finite Dimensional Vector Spaces Are Complete for Traced Symmetric Monoidal Categories. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds) Pillars of Computer Science. Lecture Notes in Computer Science, vol 4800. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78127-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-78127-1_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78126-4
Online ISBN: 978-3-540-78127-1
eBook Packages: Computer ScienceComputer Science (R0)