Abstract
Church’s Problem, stated fifty years ago, asks for a finite-state machine that realizes the transformation of an infinite sequence α into an infinite sequence β such that a requirement on (α, β), expressed in monadic second-order logic, is satisfied. We explain how three fundamental techniques of automata theory play together in a solution of Church’s Problem: Determinization (starting from the subset construction), appearance records (for stratifying acceptance conditions), and reachability analysis (for the solution of games).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)
Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel, E., et al. (eds.) Proc. 1960 International Congress on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University Press (1962)
Büchi, J.R., Elgot, C.C.: Decision problems of weak second-order arithmetics and finite automata, Abstract 553-112, Notices Amer. Math. Soc. 5, 834 (1958)
Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies, Trans. Trans. Amer. Math. Soc 138, 367–378 (1969)
Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis. In: Summaries of the Summer Institute of Symbolic Logic, vol. I, pp. 3–50. Cornell Univ, Ithaca, N.Y (1957)
Church, A.: Logic, arithmetic, and automata. In: Proc. Int. Congr. Math. 1962, Inst. Mittag-Leffler, Djursholm, Sweden, pp. 23–35 (1963)
Dziembowski, S., Jurdziński, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: Proc. 12th IEEE Symp. on Logic in Computer Science, pp. 99–110. IEEE Computer Society Press, Los Alamitos (1997)
Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–52 (1961)
Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus, and determinacy. In: Proc. 32nd FoCS 1991, pp. 368–377. IEEE Comp. Soc. Press, Los Alamitos (1991)
Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. 14th ACM Symp. on the Theory of Computing, pp. 60–65. ACM Press, New York (1982)
Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata. Addison-Wesley, Boston (1969)
McNaughton, R.: Finite-state infinite games, Project MAC Rep. MIT, Cambridge (1965)
McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inf. Contr. 9, 521–530 (1966)
McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65, 149–184 (1993)
Moore, E.F. (ed.): Sequential Machines – Selected Papers. Addison-Wesley, Reading, Mass (1963)
Mostowski, A.W.: Regular expressions for infinite trees and a standard form of automata. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 157–168. Springer, Heidelberg (1985)
Muller, D.E.: Infinite sequences and finite machines. In: Proc. 4th IEEE Ann. Symp. on Switching Circuit Theory and Logical Design, pp. 3–16. IEEE Press, Los Alamitos (1963)
Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic automata: New results and new proofs of the results of Rabin, McNaughton, and Safra. Theor. Comput. Sci. 141, 69–107 (1995)
Myhill, J.: Finite automata and the representation of events, WADC Tech. Rep. 57-624, pp. 112-137 (1957)
Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141, 1–35 (1969)
Rabin, M.O.: Automata on infinite objects and Church’s Problem, Amer. Math. Soc., Providence RI (1972)
Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)
Safra, S.: On the complexity of omega-automata. In: Proc. 29th Ann. Symp.on Foundations of Computer Science, White Plains, New York, pp. 319–327. IEEE Computer Society Press, Los Alamitos (1988)
Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)
Thomas, W.: Solution of Church’s Problem: A tutorial. In: Apt, K., van Rooij, R. (eds.) New Perspectives on Games and Interaction, vol. 5, Amsterdam Univ. Press, Texts on Logic and Games (to appear)
Trakhtenbrot, B.A.: On operators realizable in logical nets. Dokl. Akad. Naut. SSSR 112, 1005–1007 (1957) (in Russian)
Trakhtenbrot, B.A.: Synthesis of logical nets whose operators are described of monadic predicates. Dokl. Akad. Naut. SSSR 118, 646–649 (1958) (in Russian)
Trakhtenbrot, B.A., Barzdin, Ya.M.: Finite Automata. Behavior and Synthesis. North-Holland, Amsterdam (1973)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Thomas, W. (2008). Church’s Problem and a Tour through Automata Theory. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds) Pillars of Computer Science. Lecture Notes in Computer Science, vol 4800. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78127-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-78127-1_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78126-4
Online ISBN: 978-3-540-78127-1
eBook Packages: Computer ScienceComputer Science (R0)