Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic Multiresolution Optical Flow Computation

  • Conference paper
Robot Vision (RobVis 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4931))

Included in the following conference series:

  • 2464 Accesses

Abstract

This paper introduces a new algorithm for computing multi-resolution optical flow, and compares this new hierarchical method with the traditional combination of the Lucas-Kanade method with a pyramid transform. The paper shows that the new method promises convergent optical flow computation. Aiming at accurate and stable computation of optical flow, the new method propagates results of computations from low resolution images to those of higher resolution. The resolution of images increases this way for the sequence of images used in those calculations. The given input sequence of images defines the maximum of possible resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vision 2, 283–310 (1989)

    Article  Google Scholar 

  2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vision 12, 43–77 (1995)

    Article  Google Scholar 

  3. Bouguet, J.: Pyramidal implementation of the Lucas-Kanade feature tracker. Intel Corporation, Microprocessor Research Labs, OpenCV Documents (1999)

    Google Scholar 

  4. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)

    Article  Google Scholar 

  5. Handschack, P., Klette, R.: Quantitative comparisons of differential methods for measuring image velocity. In: Proc. Aspects of Visual Form Processing, Capri, pp. 241–250 (1994)

    Google Scholar 

  6. Hwang, S.-H., Lee, U.K.: A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint. Pattern Recognition 26, 939–952 (1993)

    Article  Google Scholar 

  7. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Imaging Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  8. Mahzoun, M.R., et al.: A scaled multigrid optical flow algorithm based on the least RMS error between real and estimated second images. Pattern Recognition 32, 657–670 (1999)

    Article  Google Scholar 

  9. Nagel, H.-H.: On the estimation of optical flow: Relations between different approaches and some new results. Artificial Intelligence 33, 299–324 (1987)

    Article  Google Scholar 

  10. Ruhnau, P., et al.: Variational optical flow estimation for particle image velocimetry. Experiments in Fluids 38, 21–32 (2005)

    Article  Google Scholar 

  11. Weber, J., Malik, J.: Robust computation of optical flow in a multi-scale differential framework. Int. J. Comput. Vision 14, 67–81 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohnishi, N., Kameda, Y., Imiya, A., Dorst, L., Klette, R. (2008). Dynamic Multiresolution Optical Flow Computation. In: Sommer, G., Klette, R. (eds) Robot Vision. RobVis 2008. Lecture Notes in Computer Science, vol 4931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78157-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78157-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78156-1

  • Online ISBN: 978-3-540-78157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics