Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decision Procedures for Multisets with Cardinality Constraints

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4905))

Abstract

Applications in software verification and interactive theorem proving often involve reasoning about sets of objects. Cardinality constraints on such collections also arise in these scenarios. Multisets arise for analogous reasons as sets: abstracting the content of linked data structure with duplicate elements leads to multisets. Interactive theorem provers such as Isabelle specify theories of multisets and prove a number of theorems about them to enable their use in interactive verification. However, the decidability and complexity of constraints on multisets is much less understood than for constraints on sets.

The first contribution of this paper is a polynomial-space algorithm for deciding expressive quantifier-free constraints on multisets with cardinality operators. Our decision procedure reduces in polynomial time constraints on multisets to constraints in an extension of quantifierfree Presburger arithmetic with certain “unbounded sum” expressions. We prove bounds on solutions of resulting constraints and describe a polynomial-space decision procedure for these constraints.

The second contribution of this paper is a proof that adding quantifiers to a constraint language containing subset and cardinality operators yields undecidable constraints. The result follows by reduction from Hilbert’s 10th problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiken, A.: Introduction to set constraint-based program analysis. Science of Computer Programming 35, 79–111 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Banâtre, J.-P., Le Métayer, D.: Programming by multiset transformation. Commun. ACM 36(1), 98–111 (1993)

    Article  Google Scholar 

  3. Bès, A.: Definability and decidability results related to the elementary theory of ordinal multiplication. Fund. Math. 171, 197–211 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Domenjoud, E.: Solving systems of linear diophantine equations: An algebraic approach. In: MFCS, pp. 141–150 (1991)

    Google Scholar 

  5. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. Theor. Comput. Sci. 340(3), 496–513 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Operations Research Letters 34(5), 564–568 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feferman, S., Vaught, R.L.: The first order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)

    MATH  MathSciNet  Google Scholar 

  8. Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)

    MATH  MathSciNet  Google Scholar 

  9. Kuncak, V.: Modular Data Structure Verification. PhD thesis, EECS Department, Massachusetts Institute of Technology (February 2007)

    Google Scholar 

  10. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger Arithmetic. J. of Automated Reasoning (2006)

    Google Scholar 

  11. Kuncak, V., Rinard, M.: On the theory of structural subtyping. Technical Report 879, LCS, Massachusetts Institute of Technology (2003)

    Google Scholar 

  12. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean Algebra with Presburger Arithmetic. In: CADE-21 (2007)

    Google Scholar 

  13. Lugiez, D.: Multitree automata that count. Theor. Comput. Sci. 333(1-2), 225–263 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lugiez, D., Zilio, S.D.: Multitrees Automata, Presburger’s Constraints and Tree Logics. Research report 08-2002, LIF, Marseille, France (June 2002), http://www.lif-sud.univ-mrs.fr/Rapports/08-2002.html

  15. Marnette, B., Kuncak, V., Rinard, M.: On algorithms and complexity for sets with cardinality constraints. Technical report, MIT CSAIL (August 2005)

    Google Scholar 

  16. Matiyasevich, Y.V.: Enumerable sets are Diophantine. Soviet Math. Doklady 11(2), 354–357 (1970)

    MATH  Google Scholar 

  17. Misra, J.: A logic for concurrent programming (in two parts): Safety and progress. Journal of Computer and Software Engineering 3(2), 239–300 (1995)

    Google Scholar 

  18. Nguyen, H.H., et al.: Automated verification of shape, size and bag properties via separation logic. In: VMCAI (2007)

    Google Scholar 

  19. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  20. Nipkow, T., et al.: Multiset theory version 1.30 (Isabelle distribution) (2005), http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html

  21. Christos, H., Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4), 765–768 (1981)

    Article  MATH  Google Scholar 

  22. Paulson, L.C.: Mechanizing a theory of program composition for UNITY. ACM Trans. Program. Lang. Syst. 23(5), 626–656 (2001)

    Article  Google Scholar 

  23. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algorithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, Springer, Heidelberg (1991)

    Google Scholar 

  24. Schwartz, J.T.: On programming: An interim report on the SETL project. Technical report, Courant Institute, New York (1973)

    Google Scholar 

  25. Zarba, C.G.: Combining multisets with integers. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, Springer, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Logozzo Doron A. Peled Lenore D. Zuck

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piskac, R., Kuncak, V. (2008). Decision Procedures for Multisets with Cardinality Constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2008. Lecture Notes in Computer Science, vol 4905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78163-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78163-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78162-2

  • Online ISBN: 978-3-540-78163-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics