Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards a Logical Reconstruction of CF-Induction

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4914))

Included in the following conference series:

Abstract

CF-induction is a sound and complete hypothesis finding procedure for full clausal logic which uses the principle of inverse entailment to compute a hypothesis that logically explains a set of examples with respect to a prior background theory. Currently, CF-induction computes hypotheses by applying combinations of several complex generalisation operators to an intermediate theory called a bridge formula. In this paper we propose an alternative approach whereby hypotheses are derived from a bridge formula using a single deductive operator and a single inductive operator. We show that our simplified procedure preserves the soundness and completeness of CF-induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Badea, L.: A Refinement Operator for Theories. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 1–14. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Cox, P.T., Pietrzykowski, T.: A Complete, Nonredundant Algorithm for Reversed Skolemization. Theoretical Computer Science 28(3), 239–261 (1984)

    Article  MathSciNet  Google Scholar 

  3. Doncescu, A., Inoue, K., Yamamoto, Y.: Knowledge Based Discovery in Systems Biology Using CF-Induction. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 395–404. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Inoue, K.: Linear Resolution for Consequence Finding. Artificial Intelligence 56(2-3), 301–353 (1992)

    Article  MathSciNet  Google Scholar 

  5. Inoue, K.: Induction as Consequence Finding. Machine Learning 55(2), 109–135 (2004)

    Article  Google Scholar 

  6. Laird, P.D.: Learning from Good and Bad Data. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  7. Lee, C.T.: A Completeness Theorem and Computer Program for Finding Theorems Derivable from Given Axioms. PhD thesis, Dept. of Electronic Eng. and Computer Sci., Univ. of California, Berkeley, CA (1967)

    Google Scholar 

  8. Midelfart, H.: A Bounded Search Space of Clausal Theories. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 210–221. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Muggleton, S.H.: Inverse Entailment and Progol. New Generation Computing 13(3-4), 245–286 (1995)

    Article  Google Scholar 

  10. Muggleton, S.H., Buntine, W.L.: Machine Invention of First Order Predicates by Inverting Resolution. In: Proc. of the 5th Int. Conf. on Machine Learning, pp. 339–352 (1988)

    Google Scholar 

  11. Muggleton, S.H., De Raedt, L.: Inductive Logic Programming: Theory and Methods. Logic Programming 19(20), 629–679 (1994)

    Article  MathSciNet  Google Scholar 

  12. Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    Book  Google Scholar 

  13. Plotkin, G.D.: A Further Note on Inductive Generalization. In: Machine Intelligence, vol. 6, pp. 101–124. Edinburgh University Press (1971)

    Google Scholar 

  14. Ray, O., Broda, K., Russo, A.M.: Hybrid Abductive Inductive Learning: a Generalisation of Progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 311–328. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Ray, O., Inoue, K.: Mode Directed Inverse Entailment for Full Clausal Theories. In: Proc. of the 17th Int. Conf. on Inductive Logic Programming ILP 2007. LNCS, vol. 4894. Springer, Heidelberg (to appear 2008)

    Google Scholar 

  16. Satoh, K., Uno, T.: Enumerating Maximal Frequent Sets Using Irredundant Dualization. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 256–268. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Yamamoto, A.: Hypothesis Finding Based on Upward Refinement of Residue Hypotheses. Theoretical Computer Science 298, 5–19 (2003)

    Article  MathSciNet  Google Scholar 

  18. Yamamoto, A., Fronhöfer, B.: Hypotheses Finding via Residue Hypotheses with the Resolution Principle. In: Arimura, H., Sharma, A.K., Jain, S. (eds.) ALT 2000. LNCS (LNAI), vol. 1968, pp. 156–165. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ken Satoh Akihiro Inokuchi Katashi Nagao Takahiro Kawamura

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamamoto, Y., Ray, O., Inoue, K. (2008). Towards a Logical Reconstruction of CF-Induction. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds) New Frontiers in Artificial Intelligence. JSAI 2007. Lecture Notes in Computer Science(), vol 4914. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78197-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78197-4_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78196-7

  • Online ISBN: 978-3-540-78197-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics