Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Comparative Study on Polyphonic Musical Time Series Using MCMC Methods

  • Conference paper
Data Analysis, Machine Learning and Applications
  • 6089 Accesses

Abstract

A general harmonic model for pitch tracking of polyphonic musical time series will be introduced. Based on a model of Davy and Godsill (2002) the fundamental frequencies of polyphonic sound are estimated simultaneously. For an improvement of these results a preprocessing step was be implemented to build an extended polyphonic model.

All methods are applied on real audio data from the McGill University Master Samples (Opolko and Wapnick (1987)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • DAVY, M. and GODSILL, S. J. (2002): Bayesian Harmonic Models for Musical Pitch Estima-tion and Analysis. Technical Report 431, Cambridge University Engineering Department. GILKS, W. R., RICHARDSON, S. and SPIEGELHALTER D. J. (1996): Markov Chain Monte Carlo in Practice, Chapman & Hall.

    Google Scholar 

  • OPOLKO, F. and WAPNICK, J. (1987): McGill University Master Samples [Compact disc]: Montreal, Quebec: McGill University.

    Google Scholar 

  • SOMMER K. and WEIHS C. (2006): Using MCMC as a stochastic optimization procedure for music time series. In: V. Batagelj, H.H. Bock, A. Ferligoj, and A. Ziberna (Eds.): Data Science and Classifiction , Springer, Heidelberg, 307-314.

    Chapter  Google Scholar 

  • SOMMER K. and WEIHS C. (2007): Using MCMC as a stochastic optimization procedure for monophonic and polyphonic sound. In: R. Decker and H. Lenz (Eds.): Advances in Data Analysis, Springer, Heidelberg, 645-652.

    Chapter  Google Scholar 

  • WEIHS, C. and LIGGES, U. (2006): Parameter Optimization in Automatic Transcription of Music. In: Spiliopoulou, M., Kruse, R., Nürnberger, A., Borgelt, C. and Gaul, W. (eds.): From Data and Information Analysis to Knowledge Engineering. Springer, Berlin, 740 -747.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sommer, K., Weihs, C. (2008). A Comparative Study on Polyphonic Musical Time Series Using MCMC Methods. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds) Data Analysis, Machine Learning and Applications. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78246-9_34

Download citation

Publish with us

Policies and ethics