Abstract
In this paper, we focus on the problem of preserving the privacy of sensitive relationships in graph data. We refer to the problem of inferring sensitive relationships from anonymized graph data as link re-identification. We propose five different privacy preservation strategies, which vary in terms of the amount of data removed (and hence their utility) and the amount of privacy preserved. We assume the adversary has an accurate predictive model for links, and we show experimentally the success of different link re-identification strategies under varying structural characteristics of the data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Approximation algorithms for k-anonimity. Journal of Privacy Technology (November 2005)
Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x: Anonymized social networks, hidden patterns, and structural steganography. In: 16th International Conference on World Wide Web (WWW), pp. 181–190 (2007)
Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: IEEE 21st International Conference on Data Engineering (April 2005)
Chawla, S., Dwork, C., Mcsherry, F., Smith, A., Wee, H.: Toward privacy in public databases. In: Proceedings of the Theory of Cryptography Conference (2005)
Evfimievski, A., Gehrke, J., Srikant., R.: Limiting privacy breaches in privacy preserving data mining. In: ACM Principles of database systems (PODS), pp. 211–222 (June 2003)
Getoor, L., Diehl, C.P.: Link mining: A survey. SIGKDD Explor. Newsl. 7(2), 3–12 (2005)
Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social networks (March 2007)
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: IEEE 23rd International Conference on Data Engineering, pp. 106–115 (April 2007)
Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: 22nd IEEE International Conference on Data Engineering (2006)
Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange. In: ACM Conference on Management of Data (SIGMOD), pp. 575–586 (2004)
Nergiz, M.E., Atzori, M., Clifton, C.: Hiding the presence of individuals from shared databases. In: 26th ACM SIGMOD International Conference on Management of Data (June 2007)
Nergiz, M.E., Clifton, C.: Thoughts on k-anonymization. In: IEEE 22nd International Conference on Data Engineering Workshops (ICDEW), p. 96 (April 2006)
Nergiz, M.E., Clifton, C.: Multirelational k-anonymity. In: IEEE 23rd International Conference on Data Engineering Posters (April 2007)
Pang, R., Paxson, V.: A high-level programming environment for packet trace anonymization and transformation. In: ACM SIGSOMM (2003)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Inc., San Mateo, California. Morgan Kaufmann Publishers, San Francisco (1988)
Samarati, P.: Protecting respondents’ identities in microdata release. Knowledge and Data Engineering 13(6), 1010–1027 (2001)
Singliar, T., Hauskrecht, M.: Noisy-or component analysis and its application to link analysis. Journal of Machine Learning Research 7, 2189–2213 (2006)
Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty 10(5), 571–588 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zheleva, E., Getoor, L. (2008). Preserving the Privacy of Sensitive Relationships in Graph Data. In: Bonchi, F., Ferrari, E., Malin, B., Saygin, Y. (eds) Privacy, Security, and Trust in KDD. PInKDD 2007. Lecture Notes in Computer Science, vol 4890. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78478-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-78478-4_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78477-7
Online ISBN: 978-3-540-78478-4
eBook Packages: Computer ScienceComputer Science (R0)