Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Preserving the Privacy of Sensitive Relationships in Graph Data

  • Conference paper
Privacy, Security, and Trust in KDD (PInKDD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4890))

Included in the following conference series:

Abstract

In this paper, we focus on the problem of preserving the privacy of sensitive relationships in graph data. We refer to the problem of inferring sensitive relationships from anonymized graph data as link re-identification. We propose five different privacy preservation strategies, which vary in terms of the amount of data removed (and hence their utility) and the amount of privacy preserved. We assume the adversary has an accurate predictive model for links, and we show experimentally the success of different link re-identification strategies under varying structural characteristics of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Approximation algorithms for k-anonimity. Journal of Privacy Technology (November 2005)

    Google Scholar 

  2. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x: Anonymized social networks, hidden patterns, and structural steganography. In: 16th International Conference on World Wide Web (WWW), pp. 181–190 (2007)

    Google Scholar 

  3. Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: IEEE 21st International Conference on Data Engineering (April 2005)

    Google Scholar 

  4. Chawla, S., Dwork, C., Mcsherry, F., Smith, A., Wee, H.: Toward privacy in public databases. In: Proceedings of the Theory of Cryptography Conference (2005)

    Google Scholar 

  5. Evfimievski, A., Gehrke, J., Srikant., R.: Limiting privacy breaches in privacy preserving data mining. In: ACM Principles of database systems (PODS), pp. 211–222 (June 2003)

    Google Scholar 

  6. Getoor, L., Diehl, C.P.: Link mining: A survey. SIGKDD Explor. Newsl. 7(2), 3–12 (2005)

    Article  Google Scholar 

  7. Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social networks (March 2007)

    Google Scholar 

  8. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: IEEE 23rd International Conference on Data Engineering, pp. 106–115 (April 2007)

    Google Scholar 

  9. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: 22nd IEEE International Conference on Data Engineering (2006)

    Google Scholar 

  10. Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange. In: ACM Conference on Management of Data (SIGMOD), pp. 575–586 (2004)

    Google Scholar 

  11. Nergiz, M.E., Atzori, M., Clifton, C.: Hiding the presence of individuals from shared databases. In: 26th ACM SIGMOD International Conference on Management of Data (June 2007)

    Google Scholar 

  12. Nergiz, M.E., Clifton, C.: Thoughts on k-anonymization. In: IEEE 22nd International Conference on Data Engineering Workshops (ICDEW), p. 96 (April 2006)

    Google Scholar 

  13. Nergiz, M.E., Clifton, C.: Multirelational k-anonymity. In: IEEE 23rd International Conference on Data Engineering Posters (April 2007)

    Google Scholar 

  14. Pang, R., Paxson, V.: A high-level programming environment for packet trace anonymization and transformation. In: ACM SIGSOMM (2003)

    Google Scholar 

  15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Inc., San Mateo, California. Morgan Kaufmann Publishers, San Francisco (1988)

    Google Scholar 

  16. Samarati, P.: Protecting respondents’ identities in microdata release. Knowledge and Data Engineering 13(6), 1010–1027 (2001)

    Article  Google Scholar 

  17. Singliar, T., Hauskrecht, M.: Noisy-or component analysis and its application to link analysis. Journal of Machine Learning Research 7, 2189–2213 (2006)

    MathSciNet  Google Scholar 

  18. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty 10(5), 571–588 (2002)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Bonchi Elena Ferrari Bradley Malin Yücel Saygin

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheleva, E., Getoor, L. (2008). Preserving the Privacy of Sensitive Relationships in Graph Data. In: Bonchi, F., Ferrari, E., Malin, B., Saygin, Y. (eds) Privacy, Security, and Trust in KDD. PInKDD 2007. Lecture Notes in Computer Science, vol 4890. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78478-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78478-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78477-7

  • Online ISBN: 978-3-540-78478-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics