Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Extended Beam-ACO Approach to the Time and Space Constrained Simple Assembly Line Balancing Problem

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4972))

Abstract

Assembly line balancing problems are concerned with the distribution of work required to assemble a product in mass or series production among a set of work stations on an assembly line. The specific problem considered here is known as the time and space constrained simple assembly line balancing problem. Among several possible objectives we consider the one of minimizing the number of necessary work stations. This problem is denoted by TSALBP-1 in the literature. For tackling this problem we propose an extended version of our Beam-ACO approach published in [3]. Beam-ACO algorithms are hybrid techniques that result from combining ant colony optimization with beam search. The experimental results show that our algorithm is able to find 128 new best solutions in 269 possible cases.

This work was supported by grants TIN-2005-08818-C04-01 and DPI2004-03475 of the Spanish government, and by the Ramón y Cajal program of the Spanish Ministry of Science and Technology of which Christian Blum is a research fellow. Moreover, we acknowledge Nissan Spain and the UPC Nissan Chair for partially funding this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bautista, J., Pereira, J.: Ant algorithms for assembly line balancing. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 65–75. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bautista, J., Pereira, J.: Ant algorithms for a time and space constrained assembly line balancing problem. European Journal of Operational Research (2007)

    Google Scholar 

  3. Blum, C., Bautista, J., Pereira, J.: Beam-ACO applied to assembly line balancing. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 96–107. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Trans. on Systems, Man, and Cybernetics – Part B 34(2), 1161–1172 (2004)

    Article  Google Scholar 

  5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  6. Gonçalves, J.F., de Almeida, J.R.: A hybrid genetic algorithm for assembly line balancing. Journal of Heuristics 8, 629–642 (2002)

    Article  Google Scholar 

  7. Hoffmann, T.R.: EUREKA: A hybrid system for assembly line balancing. Management Science 38, 39–47 (1992)

    MATH  Google Scholar 

  8. Johnson, R.V.: Optimally balancing large assembly lines with ”FABLE”. Management Science 34, 240–253 (1988)

    Article  Google Scholar 

  9. Lapierre, D.L., Ruiz, A., Soriano, P.: Balancing assembly lines with tabu search. European Journal of Operational Research 168, 826–837 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Merkle, D., Middendorf, M.: An ant algorithm with a new pheromone evaluation rule for total tardiness problems. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 287–296. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal of Production Research 26, 297–307 (1988)

    Article  Google Scholar 

  12. Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research 168(3), 666–693 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Scholl, A., Klein, R.: SALOME: A bidirectional branch and bound procedure for assembly line balancing. INFORMS Journal on Computing 9, 319–334 (1997)

    MATH  Google Scholar 

  14. Scholl, A., Voss, S.: Simple assembly line balancing—Heuristic approaches. Journal of Heuristics 2, 217–244 (1996)

    Article  Google Scholar 

  15. Sprecher, A.: Dynamic search tree decomposition for balancing assembly lines by parallel search. International Journal of Production Research 41, 1423–1430 (2003)

    Article  Google Scholar 

  16. Talbot, F.B., Patterson, J.H., Gehrlein, J.H.: A comparative evaluation of heuristic line balancing techniques. Management Science 32, 430–454 (1986)

    Google Scholar 

  17. Vilarinho, P.M., Simaria, A.: A two-stage heuristic method for balancing mixed-model assembly lines with parallel workstations. International Journal of Production Research, 1405–1420 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jano van Hemert Carlos Cotta

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blum, C., Bautista, J., Pereira, J. (2008). An Extended Beam-ACO Approach to the Time and Space Constrained Simple Assembly Line Balancing Problem. In: van Hemert, J., Cotta, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2008. Lecture Notes in Computer Science, vol 4972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78604-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78604-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78603-0

  • Online ISBN: 978-3-540-78604-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics