Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving Term Frequency Normalization for Multi-topical Documents and Application to Language Modeling Approaches

  • Conference paper
Advances in Information Retrieval (ECIR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4956))

Included in the following conference series:

Abstract

Term frequency normalization is a serious issue since lengths of documents are various. Generally, documents become long due to two different reasons - verbosity and multi-topicality. First, verbosity means that the same topic is repeatedly mentioned by terms related to the topic, so that term frequency is more increased than the well-summarized one. Second, multi-topicality indicates that a document has a broad discussion of multi-topics, rather than single topic. Although these document characteristics should be differently handled, all previous methods of term frequency normalization have ignored these differences and have used a simplified length-driven approach which decreases the term frequency by only the length of a document, causing an unreasonable penalization. To attack this problem, we propose a novel TF normalization method which is a type of partially-axiomatic approach. We first formulate two formal constraints that the retrieval model should satisfy for documents having verbose and multi-topicality characteristic, respectively. Then, we modify language modeling approaches to better satisfy these two constraints, and derive novel smoothing methods. Experimental results show that the proposed method increases significantly the precision for keyword queries, and substantially improves MAP (Mean Average Precision) for verbose queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: SIGIR 1996, pp. 21–29 (1996)

    Google Scholar 

  2. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. In: SIGIR 1994, pp. 232–241 (1994)

    Google Scholar 

  3. Fang, H., Tao, T., Zhai, C.: A formal study of information retrieval heuristics. In: SIGIR 2004, pp. 49–56 (2004)

    Google Scholar 

  4. Fang, H., Zhai, C.: An exploration of axiomatic approaches to information retrieval. In: SIGIR 2005 (2005)

    Google Scholar 

  5. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: SIGIR 1998, pp. 275–281 (1998)

    Google Scholar 

  6. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: SIGIR 2001, pp. 334–342 (2001)

    Google Scholar 

  7. Mei, Q., Fang, H., Zhai, C.: A study of poisson query generation model for information retrieval. In: SIGIR 2007, pp. 319–326 (2007)

    Google Scholar 

  8. Kaszkiel, M., Zobel, J.: Effective ranking with arbitrary passages. Journal of the American Society for Information Science and Technology (JASIST) 52(4), 344–364 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Craig Macdonald Iadh Ounis Vassilis Plachouras Ian Ruthven Ryen W. White

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Na, SH., Kang, IS., Lee, JH. (2008). Improving Term Frequency Normalization for Multi-topical Documents and Application to Language Modeling Approaches. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds) Advances in Information Retrieval. ECIR 2008. Lecture Notes in Computer Science, vol 4956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78646-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78646-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78645-0

  • Online ISBN: 978-3-540-78646-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics