Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Comparative Study of Fuzzy Inference Systems, Neural Networks and Adaptive Neuro Fuzzy Inference Systems for Portscan Detection

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4974))

Included in the following conference series:

Abstract

Worms spread by scanning for vulnerable hosts across the Internet. In this paper we report a comparative study of three classification schemes for automated portscan detection. These schemes include a simple Fuzzy Inference System (FIS) that uses classical inductive learning, a Neural Network that uses back propagation algorithm and an Adaptive Neuro Fuzzy Inference System (ANFIS) that also employs back propagation algorithm. We carry out an unbiased evaluation of these schemes using an endpoint based traffic dataset. Our results show that ANFIS (though more complex) successfully combines the benefits of the classical FIS and Neural Network to achieve the best classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Staniford, S., Paxson, V., Weaver, N.: How to Own the Internet in Your Spare Time. In: Usenix Security Symposium (2002)

    Google Scholar 

  2. Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Internet Quarantine: Requirements for Containing Self-Propagating Code. In: IEEE Infocom (2003)

    Google Scholar 

  3. Gu, Y., McCullum, A., Towsley, D.: Detecting anomalies in network traffic using maximum entropy estimation. In: ACM/Usenix IMC (2005)

    Google Scholar 

  4. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distributions. In: ACM Sigcomm (2005)

    Google Scholar 

  5. Endpoint Security, http://www.endpointsecurity.org

  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, Chichester (1991)

    MATH  Google Scholar 

  7. Wang, L.-X., Mendel, J.M.: Generating Fuzzy Rules by Learning from Examples. IEEE Transactions on Systems, Man, and Cybernetics 6(22), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  8. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  9. Jang, J.-S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on System, Man and Cybernetics (23), 665–685 (1993)

    Article  Google Scholar 

  10. T. Fawcett.: ROC Graphs: Notes and Practical Considerations for Researchers, Technical report (HPL-2003-4), HP Laboratories, Palo Alto, CA, 2003-4, USA (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mario Giacobini Anthony Brabazon Stefano Cagnoni Gianni A. Di Caro Rolf Drechsler Anikó Ekárt Anna Isabel Esparcia-Alcázar Muddassar Farooq Andreas Fink Jon McCormack Michael O’Neill Juan Romero Franz Rothlauf Giovanni Squillero A. Şima Uyar Shengxiang Yang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shafiq, M.Z., Farooq, M., Khayam, S.A. (2008). A Comparative Study of Fuzzy Inference Systems, Neural Networks and Adaptive Neuro Fuzzy Inference Systems for Portscan Detection. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2008. Lecture Notes in Computer Science, vol 4974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78761-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78761-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78760-0

  • Online ISBN: 978-3-540-78761-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics