Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Paths and Trails in Edge-Colored Graphs

  • Conference paper
LATIN 2008: Theoretical Informatics (LATIN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Included in the following conference series:

Abstract

This paper deals with the existence and search of Properly Edge-Colored paths/trails between two, not necessarily distinct, vertices s and t in an edge-colored graph from an algorithmic perspective. First we show that several versions of the s − t path/trail problem have polynomial solutions including the shortest path/trail case. We give polynomial algorithms for finding a longest Properly Edge-Colored path/trail between s and t for some particular graphs and characterize edge-colored graphs without Properly Edge-Colored closed trails. Next, we prove that deciding whether there exist k pairwise vertex/edge disjoint Properly Edge-Colored s − t paths/trails in a c-edge-colored graph G c is NP-complete even for k = 2 and c = Ω(n 2), where n denotes the number of vertices in G c. Moreover, we prove that these problems remain NP-complete for c-colored graphs containing no Properly Edge-Colored cycles and c = Ω(n). We obtain some approximation results for those maximization problems together with polynomial results for some particulars classes of edge-colored graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abouelaoualim, A., Das, C.K., Faria, L., Manoussakis, Y., Martinhon, C., Saad, R.: Paths and trail in edge-colored graphs (Extended Version) Technical Report, RT-3/07 (2007), http://www.ic.uff.br/PosGraduacao/lista_relatoriosTecnicos.php?ano=2007

  2. Bang-Jensen, J., Gutin, G.: Alternating cycles and paths in edge-coloured multigraphs: a survey. Discrete Mathematics 165/166, 39–60 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bang-Jensen, J., Gutin, G.: Digraphs: theory, algorithms and applications. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  4. Benkouar, A., Manoussakis, Y., Paschos, V.T., Saad, R.: On the complexity of some hamiltonian and eurelian problems in edge-colored complete graphs. RAIRO - Operations Research 30, 417–438 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Benkouar, A., Manoussakis, Y., Saad, R.: The number of 2-edge-colored complete graphs with unique hamiltonian properly edge-colored cycle. Disc. Mathematics 263(1-3), 1–10 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dorniger, D.: On permutations of chromosomes. Contributions of General Algebra 5, 95–103 (1987)

    Google Scholar 

  7. Dorniger, D.: Hamiltonian circuits determining the order of chromosomes. Disc. Appl. Math 50, 159–168 (1994)

    Article  Google Scholar 

  8. Feng, J., Giesen, H.-E., Guo, Y., Gutin, G., Jensen, T., Rafiey, A.: Characterization of edge-colored complete graphs with properly colored Hamilton paths. Journal of Graph Theory 53(4), 333–346 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoretical Computer Science 10, 111–121 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Proc. SODA 1990, pp. 434–443 (1990)

    Google Scholar 

  11. Gabow, H.N., Maheshwari, S.N., Osterweil, L.: On two problems in the generation of program test paths. IEEE Transactions on Software Engineering 2(3) (1976)

    Google Scholar 

  12. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph matching problems. Journal of ACM 38, 815–853 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gerards, A.M.H.: Matching, Network Models. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Research and Management Science, vol. 7, North Holland, Amsterdam (1995)

    Google Scholar 

  14. Grossman, J., Häggkvist, R.: Properly edge-colored cycles in edge-partioned graphs. Journal of Combinatorial Theory, Series B 34, 77–81 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. In: Proc. of the 31st Annual ACM Symposium on Theory of Computing, pp. 19–28 (1999)

    Google Scholar 

  16. Karp, R.M.: On the Computational Complexity of Combinatorial Problems. Networks 5, 45–68 (1975)

    MATH  MathSciNet  Google Scholar 

  17. Kleinberg, J.M.: Approximation algorithms for disjoint path problems, PhD. Thesis, MIT (1996)

    Google Scholar 

  18. Manoussakis, Y.: Properly edge-colored paths in edge-colored complete graphs. Discrete Applied Mathematics 56, 297–309 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pevzner, P.A.: Computational molecular biology: an algorithmic approach. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discrete Applied Mathematics 126(2-3), 239–251 (2003)

    Google Scholar 

  21. Saad, R.: Finding a longest properly edge-colered hamiltonian cycle in an edge colored complete graph is not hard. Combinatorics, Probability and Computing 5, 297–306 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tarjan, R.E.: Data structures and network algorithms, p. 44. SIAM - Philadelphia (1983)

    Google Scholar 

  23. Yeo, A.: A note on alternating cycles in edge-coloured Graphs. Journal of Combinatorial Theory, Series B 69, 222–225 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abouelaoualim, A., Das, K.C., Faria, L., Manoussakis, Y., Martinhon, C., Saad, R. (2008). Paths and Trails in Edge-Colored Graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics