Abstract
We present an application of formal concept analysis aimed at representing a meaningful structure of knowledge communities in the form of a lattice-based taxonomy. The taxonomy groups together agents (community members) who interact and/or develop a set of notions—i.e. cognitive properties of group members. In the absence of appropriate constraints on how it is built, a knowledge community taxonomy is in danger of becoming extremely complex, and thus difficult to comprehend. We consider two approaches to building a concise representation that respects the underlying structural relationships, while hiding uninteresting and/or superfluous information. The first is a pruning strategy that is based on the notion of concept stability, and the second is a representational improvement based on nested line diagrams. We illustrate the method with a small sample of a community of embryologists.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schmitt, F. (ed.): Socializing Epistemology: The Social Dimensions of Knowledge. Lanham, MD: Rowman & Littlefield (1995)
Leydesdorff, L.: In search of epistemic networks. Social Studies of Science 21, 75–110 (1991)
Haas, P.: Introduction: Epistemic communities and international policy coordination. International Organization 46(1), 1–35 (1992)
McCain, K.W.: Cocited author mapping as a valid representation of intellectual structure. J. Am. Society for Information Science 37(3), 111–122 (1986)
Atran, S.: Folk biology and the anthropology of science: Cognitive universals and cognitive particulars. Behavioral and Brain Sciences 21, 547–609 (1998)
Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. Journal of Mathematical Sociology 1, 49–80 (1971)
Roth, C., Bourgine, P.: Epistemic communities: Description and hierarchic categorization. Mathematical Population Studies 12(2), 107–130 (2005)
Roth, C., Bourgine, P.: Lattice-based dynamic and overlapping taxonomies: The case of epistemic communities. Scientometrics 69(2) (2006)
Kuznetsov, S.O.: On stability of a formal concept. In: SanJuan, E. (ed.) JIM, Metz, France (2003)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99, 7821–7826 (2002)
Noyons, E.C.M., van Raan, A.F.J.: Monitoring scientific developments from a dynamic perspective: self-organized structuring to map neural network research. Journal of the American Society for Information Science 49(1), 68–81 (1998)
White, D.R., Duquenne, V.: Social network & discrete structure analysis: Introduction to a special issue. Social Networks 18, 169–172 (1996)
Freeman, L.: Cliques, Galois lattices, and the structure of human social groups. Social Networks 18, 173–187 (1996)
Falzon, L.: Determining groups from the clique structure in large social networks. Social Networks 22, 159–172 (2000)
Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)
Peyriéras, N.: Personal communication (2005)
McCain, K.W., Verner, J.M., Hislop, G.W., Evanco, W., Cole, V.: The use of bibliometric and Knowledge Elicitation techniques to map a knowledge domain: Software Engineering in the 1990s. Scientometrics 65(1), 131–144 (2005)
Grunwald, D.J., Eisen, J.S.: Headwaters of the zebrafish – emergence of a new model vertebrate. Nature Rev. Genetics 3(9), 717–724 (2002)
Bradbury, J.: Small fish, big science. PLoS Biology 2(5), 568–572 (2004)
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. Data & Knowledge Engineering 42, 189–222 (2002)
Kuznetsov, S.O., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Expt. Theor. Artif. Intell. 14(2/3), 189–216 (2002)
Bayardo, J. R., Goethals, B., Zaki, M. (eds.): Proc. of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2004), CEUR-WS.org (2004)
Kuznetsov, S.O.: Stability as an estimate of the degree of substantiation of hypotheses derived on the basis of operational similarity. Nauchn. Tekh. Inf., Ser.2 (Automat. Document. Math. Linguist.) (12), 21–29 (1990)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, pp. 1137–1145 (1995)
Batni, R.P., Russell, J.D., Kime, C.R.: An efficient algorithm for finding an irredundant set cover. J. Ass. for Comp. Machinery 21(3), 351–355 (1974)
Belohlávek, R., Sklenar, V.: Formal concept analysis constrained by attribute-dependency formulas. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 176–191. Springer, Heidelberg (2005)
Rome, J.E., Haralick, R.M.: Towards a formal concept analysis approach to exploring communities on the world wide web. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 33–48. Springer, Heidelberg (2005)
Wille, R.: Conceptual structures of multicontexts. In: Eklund, P.W., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS, vol. 1115, pp. 23–29. Springer, Heidelberg (1996)
Wolff, K.E.: Temporal concept analysis. In: Mephu Nguifo, E., et al. (eds.) ICCS-2001 Intl. Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases, Palo Alto (CA), Stanford Univ, pp. 91–107 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Roth, C., Obiedkov, S., Kourie, D. (2008). Towards Concise Representation for Taxonomies of Epistemic Communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R. (eds) Concept Lattices and Their Applications. CLA 2006. Lecture Notes in Computer Science(), vol 4923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78921-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-78921-5_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78920-8
Online ISBN: 978-3-540-78921-5
eBook Packages: Computer ScienceComputer Science (R0)