Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 129))

Abstract

In this paper, we propose a differential evolution algorithm based design for the beta basis function neural network. The differential Evolution algorithm has been used in many practical cases and has demonstrated good convergences properties. The differential evolution is used to evolve the beta basis function neural networks topology. Compared with the traditional genetic algorithm, the combined approach proves goodly the difference, including the feasibility and the simplicity of implementation. In the prediction of Mackey-Glass chaotic time series, the networks designed by the proposed approach prove to be competitive, or even superior, to the traditional learning algorithm for a multi-layer Perceptron network and radialbasis function network. Therefore, designing a set of BBFNN can be considered as solution of a two-optimisation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.A. Alimi : The Beta System: Toward a Change in Our Use of Neuro-Fuzzy Systems, International Journal of Management, Invited Paper, June 2000, 15–19.

    Google Scholar 

  2. M.A. Alimi : On-Line Analysis of Handwritten Arabic. A New Approach to Recognize Segmented Characters From Cursive Script, Les Annales Maghrbines de l’Ingnieur, vol. 14, no.1 (2000), 7–27.

    Google Scholar 

  3. M.A. Alimi, R. Hassine and M. Selmi : Beta Fuzzy Logic Systems: Approximation Properties in the SISO Case, International Journal of Applied Mathematics & Computer Science, Special Issue on “Neuro-Fuzzy and Soft Computing” edited by D. Rutkowska and L.A. Zadeh, vol. 10, no. 4 (2000), 857–875.

    Google Scholar 

  4. M.A. Alimi and M. Ben Jemaa, Beta Fuzzy Neural Network Application in Recognition of Spoken Isolated Arabic Words, Journal of Control and Intelligent Systems, Special Issue on Non-linear Speech Processing Techniques and Applications, vol. 30, no. 2, (2002), 47–51.

    Google Scholar 

  5. M.A. Alimi, R. Hassine and M. Selmi, Beta Fuzzy Logic Systems: Approximation Properties in the SISO Case, International Journal of Applied Mathematics and Computer Science, Special Issue on Neuro-Fuzzy and Soft Computing edited by D. Rutkowska and L.A. Zadeh, vol. 10, no. 4 (2000), 857–875.

    Google Scholar 

  6. C. Aouiti, M.A. Alimi and A. Maalej, A Genetic Designed Beta Basis Function Neural Network for Approximating Multi-Variables Functions, in V. Kurkova et al. (eds.) Artificial Neural Nets and Genetic Algorithms, Springer-Verlag, Wien, (2001), 383–386.

    Google Scholar 

  7. C. Aouiti, M.A. Alimi, F. Karray and A. Maalej, A Hierarchical Genetic Algorithm For The Design Of Beta Basis Function Neural Network, Proc. International Joint Conference on Neural Networks: IJCNN02, Honolulu, Hawaii, May 2002.

    Google Scholar 

  8. C. Aouiti, A.M. Alimi and A. Maalej, A Genetic Designed Beta Basis Function Neural Networks for Multivariable Functions Approximation, Systems Analysis, Modeling, and Simulation, Special Issue on Advances in Control and Computer Engineering, vol. 42, no. 7 (2002), 975–1005.

    MATH  Google Scholar 

  9. H. Bezine, M.A. Alimi and N. Derbel, Handwriting Trajectory Movements Controlled by a Beta-Elliptic Model, Proc. 7th International Conference on Document Analysis and Recognition: ICDAR’2003, Edinburgh, UK, August 2003, 1228–1232.

    Google Scholar 

  10. H. Dhahri, and M.A. Alimi, The Modified Differential Evolution and the RBF (MDE-RBF) Neural Network for Time Series Prediction Proc. International Joint Conference on Neural Networks: IJCNN06, Vancouver, July 2006, 5245–5250.

    Google Scholar 

  11. H. Dhahri and M.A. Alimi, Hierarchical Learning Algorithm for the Beta Basis Function Neural Network, Proc. Third International Conference on Systems, Signals and Devices: SSD05, Sousse, Tunisia, March 2005.

    Google Scholar 

  12. J. Gonzalez, I. Rojas, J. Ortega, H Pomares and et al.,: Multiobjective evolutionary of the size, shape and position parameter of radial basis function neural network for function approximation, IEEE Trans. Neural Netw., vol. 14, no. 6 (2003), 1478–1495.

    Article  Google Scholar 

  13. M.T. Hamdani and M.A. Alimi, Beta-SVM a new Support Vector Machine Kernel, Proc. International Conference on Artificial Neural Networks and Genetic Algorithms: ICANNGA03, Roanne, France, April 2003, 63–68.

    Google Scholar 

  14. T. Hamdani and M.A. Alimi : how SVM a New Support Vector Machine Kernel, in D.W. Pearson, N.C. Steele, and R.F. Albrecht (eds.) Artificial Neural Nets and Genetic Algorithms, Springer-Verlag, Wien, (2003), pp. 63–68.

    Google Scholar 

  15. M.T. Hamdani and M. A. Alimi, How are beta-SVM good kernels, Proc. World Computer Congres: WCC’2004, Toulouse, France, pp. 283–292.

    Google Scholar 

  16. R. Hassine, M.A. Alimi and M. Selmi A Constructive Learning Algorithm for Beta Fuzzy Logic Systems, Proc. Int. Conf. Computational and Artificial Intelligence for Decision, Control and Automation: ACIDCA’00, Monastir, Tunisia, March 2000, 72–75.

    Google Scholar 

  17. R. Hassine, F. Karray, M. A. Alimi and M. Selmi, Approximation Properties of Fuzzy Systems for Smooth Functions and Their First Order Derivative, IEEE Trans. Systems, Man and Cybernetics, Part A, vol. 33, no. 2 (2003), pp. 160–168.

    Article  Google Scholar 

  18. G. Huang, P. Saratchandran and N. Sundararajan, A Generalized Growing and Pruning RBF Neural Network for Function Approximation IEEE Trans. Neural Netw. 16, 1 (2005).

    Google Scholar 

  19. M. Kherallah, M.A. Alimi and N. Derbel, On-Line recognition of handwritten digits by Self organisation maps using elliptical and beta representations, Proc. Premier Congrs International de Signaux, Circuits et Systmes: SCS’04, Monastir, Tunisie, (2004), 503–507.

    Google Scholar 

  20. M. Kherallah, L. Haddad and M.A. Alimi, Towards the design of handwriting recognition system by neuro-fuzzy and beta elliptical approaches, Proc. World Computer Congres: WCC’04, Toulouse, France, (2004),187–196.

    Google Scholar 

  21. M. Kherallah, F. Bouri and M.A. Alimi, Toward an On-Line Handwriting Recognition System Based on Visual Coding and Genetic Algorithm, Proc. International Conference on Artificial Neural Networks and Genetic Algorithms: ICANNGA’2005, Coimbra, Portugal, March, 502–505.

    Google Scholar 

  22. M. Masmoudi, M. Samet and M.A Alimi : A bipolar implementation of the Beta Neuron, International Journal of Electronics, vol. 87, no. 6 (2000), 675–682.

    Article  Google Scholar 

  23. M. Njah, M.A. Alimi, M. Chtourou and R. Tourki, Algoritm of Maximal Descent AMD for training Radial Basis Function Neural Networks, Proc. IEEE International Conference on Systems, Man and Cybernetics: SMC’02, Hammamet, Tunisia, October 2002.

    Google Scholar 

  24. R. Storn and K. Price : Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report TR-95-012, ICSI, (1999).

    Google Scholar 

  25. R. Storn and K. Price, Differential evolution - A simple and efficient heuristic for global over continuous spaces, J. Global Optimiz., vol 11 (1997), 341–359.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Sun, Q. Zhang and E.Tsang DE/EDAA new evolutionary algorithm for global optimisation, Info. Sci., vol.169, (2004), 249–269.

    Article  MathSciNet  Google Scholar 

  27. G. Yen and H. Lu, Hierarchical Genetic Algorithm for near optimal Feedforward Neural Network Design, IntJour of Neu. Syst, Vol. 12 (2002), 31–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dhahri, H., Alimi, A. (2008). Automatic Selection for the Beta Basis Function Neural Networks. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). Studies in Computational Intelligence, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78987-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78987-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78986-4

  • Online ISBN: 978-3-540-78987-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics