Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Probability as an Alternative to Logic for Rational Sensory–Motor Reasoning and Decision

  • Chapter
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 46))

Abstract

  1. 1

    Incompleteness and Uncertainty: A Major Challenge for Sensory-Motor Systems

We assume that both living creatures and robots must face the same fundamental difficulty: incompleteness (and its direct consequence uncertainty).

Any model of a real phenomenon is incomplete: there are always some hidden variables, not taken into account in the model, that influence the phenomenon. The effect of these hidden variables is that the model and the phenomenon never behave exactly alike. Both living organisms and robotic systems must face this central difficulty: how to use an incomplete model of their environment to perceive, infer, decide and act efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Transactions on Information Theory 46(2), 325–343 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Alais, D., Burr, D.: The ventriloquist effect results from near-optimal bimodal integration. Current Biology 14, 257–262 (2004)

    Google Scholar 

  • Anastasio, T.J., Patton, P.E., Belkacem-Boussaid, K.: Using Bayes’ rule to model multisensory enhancement in the superior colliculus. Neural Computation 12(5), 1165–1187 (2000)

    Article  Google Scholar 

  • Arnborg, S., Sjödin, G.: Bayes rules in finite models. In: Proceedings of European Conference on Artificial Intelligence, pp. 571–575 (2000)

    Google Scholar 

  • Aycard, O.: Architecture de contrôle pour robot mobile en evironnement intérieur structuré. Thèse de doctorat, Université Henri Poincaré, Nancy, France (June 1998)

    Google Scholar 

  • Banks, M.S.: Neuroscience: what you see and hear is what you get. Current Biology 14(6), 236–238 (2004)

    Article  Google Scholar 

  • Battaglia, P.W., Jacobs, R.A., Aslin, R.N.: Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America A 20(7), 1391–1397 (2003)

    Article  Google Scholar 

  • Bayes, T.: An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London 53, 370–418 (1763)

    Google Scholar 

  • Bernhardt, R., Albright, S.L.: Robot Calibration. Chapman and Hall, Boca Raton (1993)

    Google Scholar 

  • Bessière, P.: Survey: Probabilistic methodology and techniques for artefact conception and development. Technical Report RR-4730, INRIA, Grenoble, France (February 2003), http://www.inria.fr/rrrt/rr-4730.html

  • Bessière, P., Dedieu, E., Lebeltel, O., Mazer, E., Mekhnacha, K.: Interprétation ou description (i): Proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs. Intellectica 26, 257–311 (1998)

    Google Scholar 

  • Bessière, P., Dedieu, E., Lebeltel, O., Mazer, E., Mekhnacha, K.: Interprétation ou description (ii): Fondements mathématiques de l’approche f+d. Intellectica 26, 313–336 (1998)

    Google Scholar 

  • Borrelly, J.-J., Coste, E., Espiau, B., Kapellos, K., Pissard-Gibolet, R., Simon, D., Turro, N.: The orccad architecture. International Journal for Robotics Research (IJRR) 17(4), 338–359 (1998)

    Article  Google Scholar 

  • Brafman, R.I., Latombe, J.-C., Moses, Y., Shoham, Y.: Applications of a logic of knowledge to motion planning under uncertainty. J. ACM 44(5), 633–668 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Bretthorst, G.L.: Bayesian Spectrum Analysis and Parameter Estimation. Springer, Heidelberg (1988)

    MATH  Google Scholar 

  • Cassandra, A.R., Kaelbling, L.P., Kurien, J.A.: Acting under uncertainty: Discrete bayesian models for mobile robot navigation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (1996)

    Google Scholar 

  • Cooper, G.F.: The computational complexity of probabilistic inference using bayesian belief networks. Artif. Intell. 42(2-3), 393–405 (1990)

    Article  MATH  Google Scholar 

  • Cox, R.T.: The algebra of probable inference. John Hopkins Univ. Press, Baltimore (1961)

    MATH  Google Scholar 

  • Darwiche, A., Provan, G.M.: Query dags: A practical paradigm for implementing belief-network inference. J. Artif. Intell. Res (JAIR) 6, 147–176 (1997)

    MATH  MathSciNet  Google Scholar 

  • Dekhil, M., Henderson, T.C.: Instrumented sensor system architecture. International Journal for Robotics Research (IJRR) 17(4), 402–417 (1998)

    Article  Google Scholar 

  • Delcher, A.L., Grove, A.J., Kasif, S., Pearl, J.: Logarithmic-time updates and queries in probabilistic networks. J. Artif. Intell. Res (JAIR) 4, 37–59 (1996)

    MATH  MathSciNet  Google Scholar 

  • Donald, B.R.: A geometric approach to error detection and recovery for robot motion planning with uncertainty. AIJ: Artificial Intelligence 37, 223–271 (1988)

    Article  MATH  Google Scholar 

  • Drewing, K., Ernst, M.: Integration of force and position cues for shape perception through active touch. Brain Research 1078, 92–100 (2006)

    Article  Google Scholar 

  • Erickson, G., Smith, C. (eds.): Maximum-Entropy and Bayesian Methods in Science and Engineering: Volume 1: Foundations Volume 2: Applications (Fundamental Theories of Physics). Springer, Heidelberg (1988)

    Google Scholar 

  • Erickson, G., Zhai, Y. (eds.): Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2004)

    Google Scholar 

  • Erickson, G., Rychert, J., Smith, C.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1998)

    Google Scholar 

  • Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002)

    Article  Google Scholar 

  • Fougère, P.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1990)

    Google Scholar 

  • Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative multi-robot localization. Autonomous Robots 8(3), 325–344 (2000)

    Article  Google Scholar 

  • Fox, D., Thrun, S., Burgard, W., Dellaert, F.: Particle filters for mobile robot localization. In: Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, New York, Springer, Heidelberg (2001)

    Google Scholar 

  • Frey, B.J.: Graphical Models for Machine Learning and Digital Communication. MIT Press, Cambridge (1998)

    Google Scholar 

  • Fry, R.(eds.): Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2002)

    Google Scholar 

  • Geisler, W.S., Kersten, D.: Illusions, perception and Bayes. Nature Neuroscience 5(6), 598–604 (2002)

    Article  Google Scholar 

  • Gepshtein, S., Banks, M.S.: Viewing geometry determines how vision and haptics combine in size perception. Current Biology 13(6), 483–488 (2003)

    Article  Google Scholar 

  • Gopnik, A., Schulz, L.: Mechanisms of theory formation in young children. Trends in Cognitive Sciences 8(8), 371–377 (2004)

    Article  Google Scholar 

  • Gusev, V., Semenov, L.: A model for optimal processing of multisensory information in the system for maintaining body orientation in the human. Biological Cybernetics 66, 407–411 (1992)

    Article  MATH  Google Scholar 

  • Gutmann, J., Burgard, W., Fox, D., Konolige, K.: An experimental comparison of localization methods (1998)

    Google Scholar 

  • Halpern, J.Y.: A counterexample to theorems of cox and fine. Journal of Artificial Intelligence Research 10, 67–85 (1999a)

    MATH  MathSciNet  Google Scholar 

  • Halpern, J.Y.: Cox’s theorem revisited. Journal of Artificial Intelligence Research 11, 429–435 (1999b)

    MATH  MathSciNet  Google Scholar 

  • Hanson, K., Silver, R. (eds.): Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1996)

    Google Scholar 

  • Harnad, S.: Mind, machines and searle. Physica D 42, 335–346 (1989)

    Article  Google Scholar 

  • Harnad, S.: The symbol grounding problem. Journal of theoretical and experimental artificial intelligence 1, 5–25 (1990)

    Article  Google Scholar 

  • Heidbreder, G.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1996)

    Google Scholar 

  • Hillis, J.M., Watt, S.J., Landy, M.S., Banks, M.S.: Slant from texture and disparity cues: optimal cue combination. Journal of Vision 4, 967–992 (2004)

    Article  Google Scholar 

  • Jaakkola, T.S., Jordan, M.I.: Variational probabilistic inference and the QMR-DT network. Journal of Artificial Intelligence Research 10, 291–322 (1999)

    MATH  Google Scholar 

  • Jacobs, R.A.: Optimal integration of texture and motion cues to depth. Vision Research 39, 3621–3629 (1999)

    Article  Google Scholar 

  • Jaynes, E.T.: Where do we Stand on Maximal Entropy? MIT Press, Cambridge (1979)

    Google Scholar 

  • Jaynes, E.T.: On the rationale of maximum-entropy methods. Proc. IEEE 70(9), 939–952 (1982)

    Article  Google Scholar 

  • Jaynes, E.T.: Probability Theory: the Logic of Science. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Jordan, M.I.: Learning in Graphical Models (Edited Volume). MIT Press, Cambridge (1999)

    Google Scholar 

  • Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Machine Learning 37(2), 183 (1999)

    Article  MATH  Google Scholar 

  • Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1-2), 99–134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Kersten, D., Mamassian, P., Yuille, A.: Object perception as bayesian inference. Annual Review of Psychology 55, 271–304 (2004)

    Article  Google Scholar 

  • Kiemel, T., Oie, K.S., Jeka, J.J.: Multisensory fusion and the stochastic structure of postural sway. Biological Cybernetics 87, 262–277 (2002)

    Article  MATH  Google Scholar 

  • Knill, D.C., Richards, W.: Perception as bayesian inference. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  • Knuth, K., Abbas, A., Morris, R., Castle, J.(eds.): Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2005)

    Google Scholar 

  • Koenig, S., Simmons, R.: Xavier: A robot navigation architecture based on partially observable markov decision process models. In: Kortenkamp, R.B.D., Murphy, R. (eds.) Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, pp. 91–122. MIT Press, Cambridge (1998)

    Google Scholar 

  • Koller, D., Pfeffer, A.: Object-oriented bayesian networks. In: Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence (UAI-1997), San Francisco, CA, pp. 302–331. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  • Konolige, K.: Improved occupancy grids for map. Autonomous Robots 4(4), 351–367 (1997)

    Article  Google Scholar 

  • Konolige, K., Chou, K.: Markov localization using correlation. In: Thomas, D. (ed.) Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-1999), S.F., july 31- August 6, 1999, vol. 2, pp. 1154–1159. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  • Körding, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004)

    Article  Google Scholar 

  • Laplace, P.S.: Mémoire sur la probabilité des causes par les évènements. Mémoires de l’Academie des Sciences de Paris 6 (1774)

    Google Scholar 

  • Laplace, P.S.: Essai philosophique sur les probabilités. Gauthier-Villars (1814)

    Google Scholar 

  • Laplace, P.S.: A Philosophical Essay on Probabilities. Dover Publications (1996)

    Google Scholar 

  • Lauritzen, S., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems (with discussion). Journal of the Royal Statistical Society series B 50, 157–224 (1988)

    MATH  MathSciNet  Google Scholar 

  • Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)

    Google Scholar 

  • Lebeltel, O.: Programmation Bayésienne des Robots. Thèse de doctorat, Institut National Polytechnique de Grenoble, Grenoble, France (September 1999)

    Google Scholar 

  • Lebeltel, O., Bessière, P., Diard, J., Mazer, E.: Bayesian robot programming. Advanced Robotics 16(1), 49–79 (2004)

    Google Scholar 

  • Linden, W., Dose, V., Fisher, R., Preuss, R.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1999)

    Google Scholar 

  • Lozano-Pérez, T., Mason, M., Taylor, R.: Automatic synthesis of fine-motion strategies for robots. International Journal of Robotics Research 3(1), 3–24 (1984)

    Article  Google Scholar 

  • Matalon, B.: Epistémologie des probabilités. In: Piaget, J. (ed.) Logique et connaissance scientifique, Encyclopédie de la Pléiade, Gallimard (1967)

    Google Scholar 

  • Mazer, E., Boismain, G., Tuves, J.B.D., Douillard, Y., Geoffroy, S., Duboudieu, J., Tounsi, M., Verdot, F.: Start: an industrial system for teleoperation. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1154–1159 (1998)

    Google Scholar 

  • Mohammad-Djafari, A. (ed.): Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2001)

    Google Scholar 

  • Mohammad-Djafari, A., Demoment, G.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1993)

    Google Scholar 

  • Murphy, K.P.: Bayesian map learning in dynamic environments. In: Solla, S.A., Leen, T.K., Müller, K.-R. (eds.) NIPS, pp. 1015–1021. MIT Press, Cambridge (1999)

    Google Scholar 

  • Neal, R.M., Beal, M.J., Roweis, S.T.: Inferring state sequences for non-linear systems with embedded hidden Markov models. In: Thrun, S., et al. (eds.) Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2003)

    Google Scholar 

  • Nefian, A., Hayes, M.: Face recognition using an embedded hmm. In: Proceedings of the IEEE Conference on Audio and Video-based Biometric Person Authentication, pp. 19–24 (1999)

    Google Scholar 

  • Pearl, J.: Probabilistic reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  • Pizlo, Z.: Perception viewed as an inverse problem. Vision Research 41(24), 3141–3161 (2001)

    Article  Google Scholar 

  • Poggio, T.: Vision by man and machine. Scientific American 250, 106–116 (1984)

    Article  Google Scholar 

  • Robert, C.: An entropy concentration theorem: applications in artificial intelligence and descriptive statistics. Journal of Applied Probabilities 37, 303–313 (1990)

    Article  Google Scholar 

  • Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)

    Article  MATH  Google Scholar 

  • Robinson, J.A.: Logic: Form and Function. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  • Rosenblatt, J.: Optimal selection of uncertain actions by maximizing expected utility. Autonomous Robots 9(1), 17–25 (2000)

    Article  Google Scholar 

  • Roumeliotis, S.I., Bekey, G.A.: Collective localization: A distributed kalman filter approach to localization of groups of mobile robots. In: ICRA, pp. 2958–2965. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  • Roumeliotis, S.I., Bekey, G.A.: Bayesian estimation and kalman filtering: A unified framework for mobile robot localization. In: ICRA, pp. 2985–2992. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  • Ruiz, A., López-de-Teruel, P.E., Garrido, M.C.: Probabilistic inference from arbitrary uncertainty using mixtures of factorized generalized gaussians. J. Artif. Intell. Res. (JAIR) 9, 167–217 (1998)

    Google Scholar 

  • Rychert, J., Erickson, G., Smith, C.: Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2001)

    Google Scholar 

  • Saul, L.K., Jaakkola, T., Jordan, M.I.: Mean field theory for sigmoid belief networks, February 29, 1996, vol. 4, pp. 61–76 (1996), http://www.jair.org/

  • Schneider, S.A., Chen, V.W., Pardo-Castellote, G., Wang, H.H.: Controlshell: A software architecture for complex electromechanical systems. International Journal for Robotics Research (IJRR) 17(4), 360–380 (1998)

    Article  Google Scholar 

  • Shatkay, H.: Learning Models for Robot Navigation. PhD thesis, Brown University (1998)

    Google Scholar 

  • Skilling, J. (ed.): Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1994)

    Google Scholar 

  • Smith, C., Erickson, G., Neudorfer, P. (eds.): Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1992)

    Google Scholar 

  • Smith, C.R., Grandy, J.W.T.: Maximum-Entropy and Bayesian Methods in Inverse Problems. Reidel, Dordrecht, Holland (1985)

    MATH  Google Scholar 

  • Tarantola, A.: Inverse Problem Theory. Elsevier Science Publishers B. V., Amsterdam, The Netherlands (1986), ISBN 0-444-42765-1

    Google Scholar 

  • Thrun, S.: Bayesian landmark learning for mobile robot localization. Machine Learning 33(1), 41–76 (1998)

    Article  MATH  Google Scholar 

  • Thrun, S.: Towards programming tools for robots that integrate probabilistic computation and learning. In: ICRA, pp. 306–312. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  • Thrun, S., Burgard, W., Fox, D.: A probabilistic approach to concurrent mapping and localization for mobile robots. Auton. Robots 5(3-4), 253–271 (1998)

    Article  Google Scholar 

  • Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  • Van der Kooij, H., Jacobs, R., Koopman, B., Grootenboer, H.: A multisensory integration model of human stance control. Biological Cybernetics 80, 299–308 (1999)

    Article  MATH  Google Scholar 

  • Weiss, Y., Simoncelli, E.P., Adelson, E.H.: Motion illusions as optimal percepts. Nature Neuroscience 5(6), 598–604 (2002)

    Article  Google Scholar 

  • Williams, C.: Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2003)

    Google Scholar 

  • Yuille, A.L., Bülthoff, H.H.: Bayesian decision theory and psychophysics, pp. 123–161. MIT Press, Cambridge (1996)

    Google Scholar 

  • Zhang, N.L., Poole, D.: Exploiting causal independence in bayesian network inference. Journal of Artificial Intelligence Research 5, 301–328 (1996)

    MATH  MathSciNet  Google Scholar 

  • Zupan, L.H., Merfeld, D.M., Darlot, C.: Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biological Cybernetics 86(3), 209–230 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Bessière Christian Laugier Roland Siegwart

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bessière, P. (2008). Probability as an Alternative to Logic for Rational Sensory–Motor Reasoning and Decision. In: Bessière, P., Laugier, C., Siegwart, R. (eds) Probabilistic Reasoning and Decision Making in Sensory-Motor Systems. Springer Tracts in Advanced Robotics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79007-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79007-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79006-8

  • Online ISBN: 978-3-540-79007-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics