Abstract
The recognition of digital shapes is a deeply studied problem. The arithmetical framework, initiated by J.P. Reveillès in [1], provides a great theoretical basis, as well as many algorithms to deal with discrete objects. Among the many available tools, the tangential cover is a powerful one. First presented in [2], it computes the set of all maximal segments of a digital curve and allows either to obtain minimal length polygonalization, or asymptotic convergence of tangent estimations. Nevertheless, the arithmetical approach does not tolerate the introduction of irregularities, which are however inherent to the acquisition of digital shapes. In this paper, we propose a new definition for a class of so-called ”thick digital curves” that applies well to a large class of discrete objects boundaries. We then propose an extension of the tangential cover to thick digital curves and provide an algorithm with a O(nlogn) complexity, where n is the number of points of specific subparts of the thick digital curve.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Réveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique, Thèse d’Etat (1991)
Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: Application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. In: Computer Graphics and Geometric Modeling, Morgan Kaufman, San Francisco (2004)
Kovalevsky, V., Fuchs, S.: Theoretical and experimental analysis of the accuracy of perimeter estimates. In: Förster, Ruwiedel (eds.) Proc. Robust Computer Vision, pp. 218–242 (1992)
Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25(10) (2006)
Bhowmick, P., Bhattacharya, B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(9), 1590–1602 (2007)
Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition in linear time. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 371–382. Springer, Heidelberg (2005)
Buzer, L.: Digital line recognition, convex hull, thickness, a unified and logarithmic technique. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 189–198. Springer, Heidelberg (2006)
Feschet, F.: Canonical representations of discrete curves. Pattern Anal. Appl. 8(1-2), 84–94 (2005)
Buzer, L.: Computing multiple convex hulls of a simple polygonal chain in linear time. In: 23rd European Workshop on Computational Geometry (2007)
Debled-Renesson, I., Rémy, J.L., Rouyer-Degli, J.: Segmentation of discrete curves into fuzzy segments. In: 9th Intl. Workshop on Combinatorial Image Analysis. Electronic Notes in Discrete Mathematics, vol. 12, pp. 122–137. Elsevier, Amsterdam (2003)
Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25(1), 11–12 (1987)
Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. IJPRAI 9(4), 635–662 (1995)
Feschet, F., Tougne, L.: On the min dss problem of closed discrete curves. Discrete Applied Mathematics 151(1-3), 138–153 (2005)
Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. Syst. Sci. 23(2), 166–204 (1981)
Nguyen, T.P., Debled-Rennesson, I.: Curvature estimation in noisy curves. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 474–481. Springer, Heidelberg (2007)
Roussillon, T., Tougne, L., Sivignon, I.: Computation of binary objects sides number using discrete geometry, application to automatic pebbles shape analysis. In: Cucchiara, R. (ed.) 14th International Conference on Image Analysis and Processing, pp. 763–768. IEEE Computer Society, Los Alamitos (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Faure, A., Feschet, F. (2008). Tangential Cover for Thick Digital Curves. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds) Discrete Geometry for Computer Imagery. DGCI 2008. Lecture Notes in Computer Science, vol 4992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79126-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-540-79126-3_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79125-6
Online ISBN: 978-3-540-79126-3
eBook Packages: Computer ScienceComputer Science (R0)