Abstract
Multi-scenario optimization is a convenient way to formulate design optimization problems that are tolerant to disturbances and model uncertainties and/or need to operate under a variety of different conditions. Moreover, this problem class is often an essential tool to deal with semi-infinite problems. Here we adapt the IPOPT barrier nonlinear programming algorithm to provide efficient parallel solution of multi-scenario problems. The recently developed object oriented software, IPOPT 3.1, has been specifically designed to allow specialized linear algebra in order to exploit problem specific structure. Here, we discuss the high level design principles of IPOPT 3.1 and develop a parallel Schur complement decomposition approach for large-scale multi-scenario optimization problems. A large-scale example for contaminant source inversion in municipal water distribution systems is used to demonstrate the effectiveness of this approach, and parallel results with up to 32 processors are shown for an optimization problem with over a million variables.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartlett, R. A. (2001). New Object-Oriented Approaches to Large-Scale Nonlinear Programming for Process Systems Engineering, Ph.D. Thesis, Chemical Engineering Department, Carnegie Mellon University.
Bartlett, R. A. and van Bloemen Waanders, B. G. (2002). A New Linear Algebra Interface for Efficient Development of Complex Algorithms Independent of Computer Architecture and Data Mapping, Technical Report, Sandia National Laboratories, Albuquerque, NM.
Bartlett, R. A. (2002). rSQP++, An Object-Oriented Framework for Reduced Space Successive Quadratic Programming, Technical Report, Sandia National Laboratories, Albuquerque, NM.
Bhatia, T. and Biegler, L. (1999). Multiperiod design and planning with interior point methods, Comp. Chem. Eng. 23(7): 919–932.
Biegler, L. T., Grossmann, I. E., and Westerberg, A. W. (1997). Systematic Methods of Chemical Process Design, Prentice-Hall, Upper Saddle River, NJ.
Buchberger, S. G. and Wells, G. J. (1996). Intensity, duration and frequency of residential water demands, Journal of Water Resources Planning and Management, ASCE, 122(1):11-19.
Buchberger, S. G. and Wu, L. (1995). A model for instantaneous residential water demands. Journal of Hydraulic Engineering, ASCE, 121(3):232-246.
Fourer, R., Gay, D. M., and Kernighan, B. W. (1992). AMPL: A Modeling Language for Mathematical Programming. Belmont, CA: Duxbury Press.
Gondzio, J. and Grothey, A. (2004). Exploiting Structure in Parallel Implementation of Interior Point Methods for Optimization, Technical Report MS-04-004, School of Mathematics, The University of Edinburgh.
Gondzio, J. and Grothey, A. (2006). Solving Nonlinear Financial Planning Problems with 109 Decision Variables on Massively Parallel Architectures, Technical Report MS-06-002, School of Mathematics, The University of Edinburgh.
Laird, C. D., Biegler, L. T., van Bloemen Waanders, B., and Bartlett, R. A. (2005). Time Dependent Contaminant Source Determination for Municipal Water Networks Using Large Scale Optimization, ASCE Journal of Water Resource Management and Planning, 131, 2, p. 125.
Laird, C. D., Biegler, L. T. and van Bloemen Waanders, B. (2007). Real-time, Large Scale Optimization of Water Network Systems using a Subdomain Approach, in Real-Time PDE-Constrained Optimization, SIAM, Philadelphia.
Ostrovsky, G. M., Datskov, I. V., Achenie, L. E. K., Volin, Yu.M. (2003) Process uncertainty: the case of insufficient process data at the operation stage. AIChE Journal 49, 1216-1240.
Ostrovsky, G., Volin, Y. M. and Senyavin, N. M. (1997). An approach to solving a two-stage optimization problem under uncertainty, Comp. Chem. Eng. 21(3): 317.
Rooney, W. and Biegler, L. (2003). Optimal Process Design with Model Parameter Uncertainty and Process Variability, Nonlinear confidence regions for design under uncertainty, AIChE Journal, 49(2), 438.
Varvarezos, D., Biegler, L. and Grossmann, I. (1994). Multi-period design optimization with SQP decomposition, Comp. Chem. Eng. 18(7): 579–595.
Wächter, A., and Biegler, L. T. (2006). On the Implementation of an Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming, Mathematical Programming, 106(1), 25-57.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Laird, C.D., Biegler, L.T. (2008). Large-Scale Nonlinear Programming for Multi-scenario Optimization. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79409-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-79409-7_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79408-0
Online ISBN: 978-3-540-79409-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)