Abstract
In this contribution we introduce a novel method for 3D trajectory based recognition and discrimination between different working actions and long-term motion prediction. The 3D pose of the human hand-forearm limb is tracked over time with a multi-hypothesis Kalman Filter framework using the Multiocular Contracting Curve Density algorithm (MOCCD) as a 3D pose estimation method. A novel trajectory classification approach is introduced which relies on the Levenshtein Distance on Trajectories (LDT) as a measure for the similarity between trajectories. Experimental investigations are performed on 10 real-world test sequences acquired from different viewpoints in a working environment. The system performs the simultaneous recognition of a working action and a cognitive long-term motion prediction. Trajectory recognition rates around 90% are achieved, requiring only a small number of training sequences. The proposed prediction approach yields significantly more reliable results than a Kalman Filter based reference approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. Journal of the Association for Computing Machinery 17(4), 589–602 (1970)
Black, M.J., Jepson, A.D.: A probabilistic framework for matching temporal trajectories: Condensation-based recognition of gestures and expressions. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 909–924. Springer, Heidelberg (1998)
Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)
Campbell, L.W., Becker, D.A., Azarbayejani, A., Bobick, A.F., Pentland, A.: Invariant features for 3-d gesture recognition. In: FG 1996: Proceedings of the 2nd International Conference on Automatic Face and Gesture Recognition (FG 1996), Washington, DC, USA, p. 157. IEEE Computer Society Press, Los Alamitos (1996)
Croitoru, A., Agouris, P., Stefanidis, A.: 3d trajectory matching by pose normalization. In: GIS 2005: Proceedings of the 13th annual ACM international workshop on Geographic information systems, Bremen, Germany, pp. 153–162. ACM Press, New York (2005)
Fritsch, J., Hofemann, N., Sagerer, G.: Combining sensory and symbolic data for manipulative gesture recognition. In: Proc. Int. Conf. on Pattern Recognition, vol. 3, pp. 930–933. IEEE, Cambridge (2004)
Hahn, M., Krüger, L., Wöhler, C., Gross, H.-M.: Tracking of human body parts using the multiocular contracting curve density algorithm. In: 3DIM 2007: Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling, Washington, DC, USA, pp. 257–264. IEEE Computer Society Press, Los Alamitos (2007)
Hofemann, N.: Videobasierte Handlungserkennung für die natürliche Mensch-Maschine-Interaktion. Dissertation, Universität Bielefeld, Technische Fakultät (2007)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)
Li, Z., Fritsch, J., Wachsmuth, S., Sagerer, G.: An object-oriented approach using a top-down and bottom-up process for manipulative action recognition. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 212–221. Springer, Heidelberg (2006)
Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment - a modern synthesis. In: ICCV 1999: Proceedings of the International Workshop on Vision Algorithms, pp. 298–372. Springer, London (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hahn, M., Krüger, L., Wöhler, C. (2008). 3D Action Recognition and Long-Term Prediction of Human Motion. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-79547-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79546-9
Online ISBN: 978-3-540-79547-6
eBook Packages: Computer ScienceComputer Science (R0)