Abstract
The extraction of curve skeletons from tubular networks is a necessary prerequisite for virtual endoscopy applications. We present an approach for curve skeleton extraction directly from gray value images that supersedes the need to deal with segmentations and skeletonizations. The approach uses properties of the Gradient Vector Flow to derive a tube-likeliness measure and a medialness measure. Their combination allows the detection of tubular structures and an extraction of their medial curves that stays centered also in cases where the structures are not tubular such as junctions or severe stenoses. We present results on clinical datasets and compare them to curve skeletons derived with different skeletonization approaches from high quality segmentations. Our approach achieves a high centerline accuracy and is computationally efficient by making use of a GPU based implementation of the Gradient Vector Flow.
This work was supported by the Austrian Science Fund (FWF) under the doctoral program Confluence of Vision and Graphics W1209.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Palagyi, K., Sorantin, E., Balogh, E., Kuba, A., Halmai, C., Erdohelyi, B., Hausegger, K.: A sequential 3D thinning algorithm and its medical applications. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 409–415. Springer, Heidelberg (2001)
Hassouna, M.S., Farag, A.A.: On the extraction of curve skeletons using gradient vector flow. In: Proc. of ICCV, pp. 1–8 (2007)
Hassouna, M.S., Farag, A.A., Falk, R.: Differential fly-throughs (DFT): A general framework for computing flight paths. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 654–661. Springer, Heidelberg (2005)
Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. MIA 9(3), 209–221 (2005)
Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3d images and applications to virtual endoscopy. MIA 5(4), 281–299 (2001)
Wink, O., Niessen, W., Viergever, M.: Multiscale vessel tracking. IEEE TMI 21(2)23(1), 130–133 (2004)
Aylward, S., Bullit, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE TMI 21(2), 61–75 (2002)
Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. CVIU 2(80), 130–171 (2000)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Bullitt, E., Aylward, S., Smith, K., Jukherji, S., Jiroutek, M., Muller, K.: Symbolic description of intracerebral vessels segmented from magnetic resonance angiograms and evaluation by comparision with x-ray angiograms. MIA 5(2), 157–169 (2001)
Szymczak, A., Stillman, A., Tannenbaum, A., Mischaikow, K.: Coronary vessel trees from 3d imagery: A topological approach. MIA 10(4), 548–559 (2006)
Bauer, C., Bischof, H.: A novel approach for detection of tubular objects and its application to medical image analysis. In: Proc. of DAGM 2008 (in print) (2008)
Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE TMI 7(3), 359–369 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bauer, C., Bischof, H. (2008). Extracting Curve Skeletons from Gray Value Images for Virtual Endoscopy. In: Dohi, T., Sakuma, I., Liao, H. (eds) Medical Imaging and Augmented Reality. MIAR 2008. Lecture Notes in Computer Science, vol 5128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79982-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-540-79982-5_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79981-8
Online ISBN: 978-3-540-79982-5
eBook Packages: Computer ScienceComputer Science (R0)