Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Method to Find Learner’s Key Characteristic in Wed-Based Learning

  • Conference paper
Advances in Web Based Learning - ICWL 2008 (ICWL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5145))

Included in the following conference series:

  • 1531 Accesses

Abstract

One of the challenges in personalized e-learning research field is how to meet the unique learning strategies according to a learner’s personality characteristic. But a learner’s characteristic may have many attributes, and some of them have not equal value for personalized e-learning. This paper exploits the aspect to evaluate the important attributes, puts forward the concept of key personality characteristic and an improved algorithm basing on rough set theory to find the key attributes. Systematic experiments and their results are reported and shows the dimensions of personality characteristic can be decreased to below one-quarter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, D., Huang, X.: The introduction of learning research[J]. Education Research (2), 81 (2002)

    Google Scholar 

  2. Vermetten, J., Lodewijks, G., Vermunt, D.: The Role of Personality Traits and Goal Orientations in Strategy Use[J]. Contemporary Educational Psychology (26), 150–152 (2001)

    Article  Google Scholar 

  3. Liu, R., Dai, M.: Research of Chinese college foreign language instruction reform situation and development[M]. Foreign Language Education and Research Press, Beijing (2003)

    Google Scholar 

  4. Pawlak, Z., Grzymala-Busse, J., Slowinski, R., et al.: Rough Sets[J]. Communications of the ACM 38(11), 89–95 (1995)

    Article  Google Scholar 

  5. Pawlak, Z.: Rough set theory and its applications to data analysis[J]. Cybernetics and Systems (1998)

    Google Scholar 

  6. Krysinski, J., Skzypczak, A., Demski, G., et al.: Application of the Rough Set Theory in Structure Activity Relationships of Antielectrostatic Imidazolium Compounds[J]. Quant. Struct.-Act. Relat.,20, WILEY-VCH Verlag GmbH (2002)

    Google Scholar 

  7. Vermetten, J., Lodewijks, G., Vermunt, D.: The Role of Personality Traits and Goal Orientations in Strategy Use[J]. Contemporary Educational Psychology (26), 150–152 (2001)

    Article  Google Scholar 

  8. Busato, V.V., Prins, F.J., Elshout, J.J., et al.: The relation between learning styles, the big five personality traits and achievement motivation in higher education[J]. Personality and Individual Differences 26, 129–140 (1999)

    Article  Google Scholar 

  9. Nguyen, H.S.: Discretization Problem for Rough Sets Methods. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 545–552. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support –Handbook of Applications and Advances of the Rough Sets Theory[J], vol. (3), pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frederick Li Jianmin Zhao Timothy K. Shih Rynson Lau Qing Li Dennis McLeod

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, X., Zheng, Q., Li, H., Liu, G. (2008). A Method to Find Learner’s Key Characteristic in Wed-Based Learning. In: Li, F., Zhao, J., Shih, T.K., Lau, R., Li, Q., McLeod, D. (eds) Advances in Web Based Learning - ICWL 2008. ICWL 2008. Lecture Notes in Computer Science, vol 5145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85033-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85033-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85032-8

  • Online ISBN: 978-3-540-85033-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics