Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distributed Relay Protocol for Probabilistic Information-Theoretic Security in a Randomly-Compromised Network

  • Conference paper
Information Theoretic Security (ICITS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5155))

Included in the following conference series:

Abstract

We introduce a simple, practical approach with probabilistic information-theoretic security to mitigate one of quantum key distribution’s major limitations: the short maximum transmission distance (~200 km) possible with present day technology. Our scheme uses classical secret sharing techniques to allow secure transmission over long distances through a network containing randomly-distributed compromised nodes. The protocol provides arbitrarily high confidence in the security of the protocol, and modest scaling of resource costs with improvement of the security parameter. Although some types of failure are undetectable, users can take preemptive measures to make the probability of such failures arbitrarily small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proc. of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  3. Takesue, H., Nam, S.W., Zhang, Q., Hadfield, R.H., Honjo, T., Tamaki, K., Yamamoto, Y.: Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors. Nature Photonics 1, 343–348 (2007)

    Article  Google Scholar 

  4. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  Google Scholar 

  5. Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  Google Scholar 

  6. Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  Google Scholar 

  7. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  Google Scholar 

  9. Shamir, A.: How to share a secret. Comm.of the ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of the National Computer Conference, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  11. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Physical Review A 72, 012332 (2005)

    Article  Google Scholar 

  12. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. of the 20th Annual ACM Symposium on Theory of Computing, pp. 1–10 (1988)

    Google Scholar 

  13. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proc.of the 10th Annual ACM Symposium on Principles of Distributed Computing, pp. 51–59 (1991)

    Google Scholar 

  14. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing, or how to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

    Google Scholar 

  15. Salvail, L.: Security Architecture for SECOQC: Secret-key Privacy and Authenticity over QKD Networks. D-SEC-48, SECOQC (2007)

    Google Scholar 

  16. D’Arco, P., Stinson, D.R.: On unconditionally secure robust distributed key distribution centers. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 346–363. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reihaneh Safavi-Naini

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beals, T.R., Sanders, B.C. (2008). Distributed Relay Protocol for Probabilistic Information-Theoretic Security in a Randomly-Compromised Network. In: Safavi-Naini, R. (eds) Information Theoretic Security. ICITS 2008. Lecture Notes in Computer Science, vol 5155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85093-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85093-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85092-2

  • Online ISBN: 978-3-540-85093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics