Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Opportunistic Acquisition of Adaptation Knowledge and Cases — The IakA Approach

  • Conference paper
Advances in Case-Based Reasoning (ECCBR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5239))

Included in the following conference series:

Abstract

A case-based reasoning system relies on different knowledge containers, including cases and adaptation knowledge. The knowledge acquisition that aims at enriching these containers for the purpose of improving the accuracy of the CBR inference may take place during design, maintenance, and also on-line, during the use of the system. This paper describes IakA, an approach to on-line acquisition of cases and adaptation knowledge based on interactions with an oracle (a kind of “ideal expert”). IakA exploits failures of the CBR inference: when such a failure occurs, the system interacts with the oracle to repair the knowledge base. IakA-NF is a prototype for testing IakA in the domain of numerical functions with an automatic oracle. Two experiments show how IakA opportunistic knowledge acquisition improves the accuracy of the CBR system inferences. The paper also discusses the possible links between IakA and other knowledge acquisition approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cordier, A., Fuchs, B., Lieber, J., Mille, A.: Failure Analysis for Domain Knowledge Acquisition in a Knowledge-Intensive CBR System. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Cordier, A., Fuchs, B., Mille, A.: Engineering and Learning of Adaptation Knowledge in Case-Based Reasoning. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 303–317. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Craw, S., Wiratunga, N., Rowe, R.: Learning adaptation knowledge to improve case-based reasoning. Artificial Intelligence 170(16-17), 1175–1192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case Base Mining for Adaptation Knowledge Acquisition. In: Proceedings of the 20th International Joint Conference on Arti cial Intelligence (IJCAI 2007), pp. 750–755. Morgan Kaufmann, Inc., San Francisco (2007)

    Google Scholar 

  5. Dubois, D., Esteva, F., Garcia, P., Godo, L., de Màntaras, R.L., Prade, H.: Fuzzy Modelling of Case-Based Reasoning and Decision. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 599–610. Springer, Heidelberg (1997)

    Google Scholar 

  6. Hammond, K.J.: Explaining and Repairing Plans That Fail. Artificial Intelligence 45(1-2), 173–228 (1990)

    Article  Google Scholar 

  7. Hanney, K.: Learning Adaptation Rules from Cases. MSc Thesis, Trinity College Dublin, Ireland (1996)

    Google Scholar 

  8. Kendall, M.G., Stuart, A.: The advanced theory of statistics: Tome 1 distribution theory. Hafner, New York (1969)

    Google Scholar 

  9. Leake, D., Kinley, A., Wilson, D.: Learning to integrate multiple knowledge sources for case-based reasoning. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  10. Leake, D.B., Kinley, A., Wilson, D.: Learning to Improve Case Adaptation by Introspective Reasoning and CBR. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 229–240. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  11. Smyth, B., Keane, M.T.: Retrieving Adaptable Cases: The Role of Adaptation Knowledge in Case Retrieval. In: Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS, vol. 837, pp. 209–220. Springer, Heidelberg (1994)

    Google Scholar 

  12. Smyth, B., Keane, M.T.: Adaptation-Guided Retrieval: Questioning the SimilarityAssumption in Reasoning. Artificial Intelligence 102(2), 249–293 (1998)

    Article  MATH  Google Scholar 

  13. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus-Dieter Althoff Ralph Bergmann Mirjam Minor Alexandre Hanft

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cordier, A., Fuchs, B., Lana de Carvalho, L., Lieber, J., Mille, A. (2008). Opportunistic Acquisition of Adaptation Knowledge and Cases — The IakA Approach. In: Althoff, KD., Bergmann, R., Minor, M., Hanft, A. (eds) Advances in Case-Based Reasoning. ECCBR 2008. Lecture Notes in Computer Science(), vol 5239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85502-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85502-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85501-9

  • Online ISBN: 978-3-540-85502-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics