Abstract
A case-based reasoning system relies on different knowledge containers, including cases and adaptation knowledge. The knowledge acquisition that aims at enriching these containers for the purpose of improving the accuracy of the CBR inference may take place during design, maintenance, and also on-line, during the use of the system. This paper describes IakA, an approach to on-line acquisition of cases and adaptation knowledge based on interactions with an oracle (a kind of “ideal expert”). IakA exploits failures of the CBR inference: when such a failure occurs, the system interacts with the oracle to repair the knowledge base. IakA-NF is a prototype for testing IakA in the domain of numerical functions with an automatic oracle. Two experiments show how IakA opportunistic knowledge acquisition improves the accuracy of the CBR system inferences. The paper also discusses the possible links between IakA and other knowledge acquisition approaches.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cordier, A., Fuchs, B., Lieber, J., Mille, A.: Failure Analysis for Domain Knowledge Acquisition in a Knowledge-Intensive CBR System. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626. Springer, Heidelberg (2007)
Cordier, A., Fuchs, B., Mille, A.: Engineering and Learning of Adaptation Knowledge in Case-Based Reasoning. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 303–317. Springer, Heidelberg (2006)
Craw, S., Wiratunga, N., Rowe, R.: Learning adaptation knowledge to improve case-based reasoning. Artificial Intelligence 170(16-17), 1175–1192 (2006)
d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case Base Mining for Adaptation Knowledge Acquisition. In: Proceedings of the 20th International Joint Conference on Arti cial Intelligence (IJCAI 2007), pp. 750–755. Morgan Kaufmann, Inc., San Francisco (2007)
Dubois, D., Esteva, F., Garcia, P., Godo, L., de Màntaras, R.L., Prade, H.: Fuzzy Modelling of Case-Based Reasoning and Decision. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 599–610. Springer, Heidelberg (1997)
Hammond, K.J.: Explaining and Repairing Plans That Fail. Artificial Intelligence 45(1-2), 173–228 (1990)
Hanney, K.: Learning Adaptation Rules from Cases. MSc Thesis, Trinity College Dublin, Ireland (1996)
Kendall, M.G., Stuart, A.: The advanced theory of statistics: Tome 1 distribution theory. Hafner, New York (1969)
Leake, D., Kinley, A., Wilson, D.: Learning to integrate multiple knowledge sources for case-based reasoning. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco (1997)
Leake, D.B., Kinley, A., Wilson, D.: Learning to Improve Case Adaptation by Introspective Reasoning and CBR. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 229–240. Springer, Heidelberg (1995)
Smyth, B., Keane, M.T.: Retrieving Adaptable Cases: The Role of Adaptation Knowledge in Case Retrieval. In: Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS, vol. 837, pp. 209–220. Springer, Heidelberg (1994)
Smyth, B., Keane, M.T.: Adaptation-Guided Retrieval: Questioning the SimilarityAssumption in Reasoning. Artificial Intelligence 102(2), 249–293 (1998)
Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cordier, A., Fuchs, B., Lana de Carvalho, L., Lieber, J., Mille, A. (2008). Opportunistic Acquisition of Adaptation Knowledge and Cases — The IakA Approach. In: Althoff, KD., Bergmann, R., Minor, M., Hanft, A. (eds) Advances in Case-Based Reasoning. ECCBR 2008. Lecture Notes in Computer Science(), vol 5239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85502-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-85502-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85501-9
Online ISBN: 978-3-540-85502-6
eBook Packages: Computer ScienceComputer Science (R0)