Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptation through Planning in Knowledge Intensive CBR

  • Conference paper
Advances in Case-Based Reasoning (ECCBR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5239))

Included in the following conference series:

  • 1177 Accesses

Abstract

Adaptation is probably the most difficult task in Case-Based Reasoning (CBR) systems. Most techniques for adaptation propose ad-hoc solutions that require an effort on knowledge acquisition beyond typical CBR standards.

In this paper we demonstrate the applicability of domain-independent planning techniques that exploit the knowledge already acquired in many knowledge-rich approaches to CBR. Those techniques are exemplified in a case-based training system that generates a 3D scenario from a declarative description of the training case.

Supported by the Spanish Ministry of Science and Education (TIN2006-15202-C03-03 and TIN2006-15140-C03-02).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gómez-Martín, M.A., Gómez-Martín, P.P., González-Calero, P.A.: Aprendizaje activo en simulaciones interactivas. Revista Iberoamericana de Inteligencia Artificial 11(33), 25–36 (2007)

    Google Scholar 

  2. Gómez-Martín, P.P., Gómez-Martín, M.A., González-Calero, P.A.: Using metaphors in game-based education. In: Hui, K.-c., Pan, Z., Chung, R.C.-k., Wang, C.C.L., Jin, X., Göbel, S., Li, E.C.-L. (eds.) EDUTAINMENT 2007. LNCS, vol. 4469, pp. 477–488. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Hammond, K.J.: Case-Based Planning: Viewing Planning as a Memory Task. Academic Press, Boston (1989)

    Google Scholar 

  4. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

    MATH  Google Scholar 

  5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The description logic handbook: theory, implementation, and applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  6. McNeill, F., Bundy, A., Walton, C.: Planning from rich ontologies through translation betweeen representations. In: Proceedings of ICAPS 2005 Workshop on The Role of Ontologies in Planning and Scheduling, Monterey, CA, USA (2005)

    Google Scholar 

  7. Sirin, E.: Combining Description Logic reasoning with AI planning for composition of web services. PhD thesis, University of Maryland (2006)

    Google Scholar 

  8. Sánchez-Ruiz, A.A., González-Calero, P.A., Díaz-Agudo, B.: Planning with description logics and syntactic updates. In: Salido, M., Fdez-Olivares, J. (eds.): Planning, Scheduling and Constraint Satisfaction (CAEPIA 2007 Workshop), Universidad de Salamanca, pp. 140–150 (2007)

    Google Scholar 

  9. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, 2006 (2006)

    Google Scholar 

  10. Díaz-Agudo, B., González-Calero, P.: An Ontological Approach to Develop Knowledge Intensive CBR Systems. In: Ontologies: A Handbook of Principles, Concepts and Applications in Information Systems, pp. 173–214 (2007)

    Google Scholar 

  11. Gómez-Martín, M.A., Gómez-Martín, P.P., Palmier-Campos, P., González-Calero, P.A.: Not yet another visualization tool: Learning compilers for fun. In: Panizo-Alonso, L., Sánchez-González, L., Fernández-Manjón, B., Llamas-Nistal, M. (eds.) 8th International Symposium on Computers in Education (SIIE 2006), León, Spain, Universidad de León, October 2006, pp. 264–271 (2006)

    Google Scholar 

  12. Leake, D.B., Kinley, A., Wilson, D.C.: Learning to improve case adaption by introspective reasoning and CBR. In: ICCBR, pp. 229–240 (1995)

    Google Scholar 

  13. González-Calero, P.A., Gómez-Albarrán, M., Díaz-Agudo, B.: A substitution-based adaptation model. In: ICCBR Workshops, pp. 17–26 (1999)

    Google Scholar 

  14. Wilke, W., Vollrath, I., Bergmann, R.: Using knowledge containers to model a framework for learning adaptation knowledge. In: Wettschereck, D., Aha, D.W. (eds.) European Conference on Machine Learning (MLNet) Workshop Notes — Case-Based Learning: Beyond Classification of Feature Vectors, pp. 68–75 (1997)

    Google Scholar 

  15. Hanney, K., Keane, M.T.: Learning adaptation rules from a case-base. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 179–192. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  16. Craw, S., Wiratunga, N., Rowe, R.: Learning adaptation knowledge to improve case-based reasoning. Artif. Intell. 170, 1175–1192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus-Dieter Althoff Ralph Bergmann Mirjam Minor Alexandre Hanft

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez-Ruiz, A., Gómez-Martín, P.P., Díaz-Agudo, B., González-Calero, P.A. (2008). Adaptation through Planning in Knowledge Intensive CBR . In: Althoff, KD., Bergmann, R., Minor, M., Hanft, A. (eds) Advances in Case-Based Reasoning. ECCBR 2008. Lecture Notes in Computer Science(), vol 5239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85502-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85502-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85501-9

  • Online ISBN: 978-3-540-85502-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics