Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Query Recommendation Using Large-Scale Web Access Logs and Web Page Archive

  • Conference paper
Database and Expert Systems Applications (DEXA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5181))

Included in the following conference series:

  • 1179 Accesses

Abstract

Query recommendation suggests related queries for search engine users when they are not satisfied with the results of an initial input query, thus assisting users in improving search quality. Conventional approaches to query recommendation have been focused on expanding a query by terms extracted from various information sources such as a thesaurus like WordNet, the top ranked documents and so on. In this paper, we argue that past queries stored in query logs can be a source of additional evidence to help future users. We present a query recommendation system based on large-scale Web access logs and Web page archive, and evaluate three query recommendation strategies based on different feature spaces (i.e., noun, URL, and Web community). The experimental results show that query logs are an effective source for query recommendation, and the Web community-based and noun-based strategies can extract more related search queries than the URL-based one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beeferman, D., Berger, A.L.: Agglomerative clustering of a search engine query log. In: KDD, pp. 407–416 (2000)

    Google Scholar 

  2. Catledge, L., Pitkow, J.: Characterizing browsing behaviors on the world-wide web. Computer Networks and ISDN Systems 27(6) (1995)

    Google Scholar 

  3. Chirita, P.-A., Firan, C.S., Nejdl, W.: Personalized query expansion for the web. In: SIGIR, pp. 7–14 (2007)

    Google Scholar 

  4. Cui, H., Wen, J.-R., Nie, J.-Y., Ma, W.-Y.: Query expansion by mining user logs. IEEE Trans. Knowl. Data Eng. 15(4), 829–839 (2003)

    Article  Google Scholar 

  5. Glance, N.S.: Community search assistant. In: IUI, pp. 91–96 (2001)

    Google Scholar 

  6. Otsuka, S., Toyoda, M., Hirai, J., Kitsuregawa, M.: Extracting user behavior by web communities technology on global web logs. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 957–968. Springer, Heidelberg (2004)

    Google Scholar 

  7. Toyoda, M., Kitsuregawa, M.: Creating a web community chart for navigating related communities. In: HT, pp. 103–112 (2001)

    Google Scholar 

  8. Wen, J.-R., Nie, J.-Y., Zhang, H.: Query clustering using user logs. ACM Trans. Inf. Syst. 20(1), 59–81 (2002)

    Article  Google Scholar 

  9. Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In: SIGIR, pp. 4–11 (1996)

    Google Scholar 

  10. Zhu, Y., Gruenwald, L.: Query expansion using web access log files. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 686–695. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sourav S. Bhowmick Josef Küng Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, L., Otsuka, S., Kitsuregawa, M. (2008). Query Recommendation Using Large-Scale Web Access Logs and Web Page Archive. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2008. Lecture Notes in Computer Science, vol 5181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85654-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85654-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85653-5

  • Online ISBN: 978-3-540-85654-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics