Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Theory of Bounded Fair Scheduling

  • Conference paper
Theoretical Aspects of Computing - ICTAC 2008 (ICTAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5160))

Included in the following conference series:

Abstract

Modeling languages like UML use asynchronous communication but do not specify the order in which messages are received. A simple language for specifying such orders declaratively is proposed that ensures fair and bounded fair scheduling. Such scheduling specifications are then translated to Streett automata that accept only and all infinite runs satisfying the specification. Using the automaton as a scheduler guarantees fairness and allows to analyze schedulability using standard automata-theoretic algorithms. The formalism is extended to the case of an uncooperative environment by “fall-back” scheduling specifications when events required for progress are not provided by the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Object Management Group: UML 2.1.2 Superstructure Specification (2007), http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf

  2. Streett, R.S.: Propositional dynamic logic of looping and converse is elementary decidable. Information and Control 54(1/2), 121–141 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for distributed concurrent systems. TCS 365(1–2), 23–66 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst. 20(6), 1171–1194 (1998)

    Article  Google Scholar 

  6. Apt, K.R., Olderog, E.R.: Proof rules dealing with fairness. In: Kozen, D. (ed.) Logic of Programs, vol. 131, pp. 1–8. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  7. Kang, M., Wilbur, S.: A fair guaranteed down-link sharing scheme for cellular switched networks. In: GLOBECOM 1997, Phoenix, AZ, USA, vol. 2, pp. 1006–1010. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  8. Tidwell, T., Gill, C., Subramonian, V.: Scheduling induced bounds and the verification of preemptive real-time systems. Technical Report 2007-34, Washington University in St.Louis, Department of Computer Science & Engineering (2007)

    Google Scholar 

  9. Ramanujam, R., Lodaya, K.: Proving fairness of schedulers. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 284–301. Springer, Heidelberg (1985)

    Google Scholar 

  10. Backes, M., Pfitzmann, B., Steiner, M., Waidner, M.: Polynomial fairness and liveness. In: CSFW, pp. 160–174. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  11. Hojati, R., Singhal, V., Brayton, R.K.: Edge-streett/ edge-rabin automata environment for formal verification using language containment. Memorandum ERL-94-12, University of California at Berkeley, Berkeley, CA, USA (1994)

    Google Scholar 

  12. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 165–191. MIT Press, Cambridge (1990)

    Google Scholar 

  13. Schlatte, R., Aichernig, B., de Boer, F., Griesmayer, A., Johnsen, E.B.: Testing concurrent objects with application-specific schedulers. In: Fitzgerald, J., Haxthausen, A., Yenigün, H. (eds.) ICTAC. LNCS, vol. 5160, pp. 318–332. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John S. Fitzgerald Anne E. Haxthausen Husnu Yenigun

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schönborn, J., Kyas, M. (2008). A Theory of Bounded Fair Scheduling. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds) Theoretical Aspects of Computing - ICTAC 2008. ICTAC 2008. Lecture Notes in Computer Science, vol 5160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85762-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85762-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85761-7

  • Online ISBN: 978-3-540-85762-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics