Abstract
Modeling languages like UML use asynchronous communication but do not specify the order in which messages are received. A simple language for specifying such orders declaratively is proposed that ensures fair and bounded fair scheduling. Such scheduling specifications are then translated to Streett automata that accept only and all infinite runs satisfying the specification. Using the automaton as a scheduler guarantees fairness and allows to analyze schedulability using standard automata-theoretic algorithms. The formalism is extended to the case of an uncooperative environment by “fall-back” scheduling specifications when events required for progress are not provided by the environment.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Object Management Group: UML 2.1.2 Superstructure Specification (2007), http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf
Streett, R.S.: Propositional dynamic logic of looping and converse is elementary decidable. Information and Control 54(1/2), 121–141 (1982)
Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for distributed concurrent systems. TCS 365(1–2), 23–66 (2006)
Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)
Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst. 20(6), 1171–1194 (1998)
Apt, K.R., Olderog, E.R.: Proof rules dealing with fairness. In: Kozen, D. (ed.) Logic of Programs, vol. 131, pp. 1–8. Springer, Heidelberg (1982)
Kang, M., Wilbur, S.: A fair guaranteed down-link sharing scheme for cellular switched networks. In: GLOBECOM 1997, Phoenix, AZ, USA, vol. 2, pp. 1006–1010. IEEE Computer Society Press, Los Alamitos (1997)
Tidwell, T., Gill, C., Subramonian, V.: Scheduling induced bounds and the verification of preemptive real-time systems. Technical Report 2007-34, Washington University in St.Louis, Department of Computer Science & Engineering (2007)
Ramanujam, R., Lodaya, K.: Proving fairness of schedulers. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 284–301. Springer, Heidelberg (1985)
Backes, M., Pfitzmann, B., Steiner, M., Waidner, M.: Polynomial fairness and liveness. In: CSFW, pp. 160–174. IEEE Computer Society, Los Alamitos (2002)
Hojati, R., Singhal, V., Brayton, R.K.: Edge-streett/ edge-rabin automata environment for formal verification using language containment. Memorandum ERL-94-12, University of California at Berkeley, Berkeley, CA, USA (1994)
Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 165–191. MIT Press, Cambridge (1990)
Schlatte, R., Aichernig, B., de Boer, F., Griesmayer, A., Johnsen, E.B.: Testing concurrent objects with application-specific schedulers. In: Fitzgerald, J., Haxthausen, A., Yenigün, H. (eds.) ICTAC. LNCS, vol. 5160, pp. 318–332. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schönborn, J., Kyas, M. (2008). A Theory of Bounded Fair Scheduling. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds) Theoretical Aspects of Computing - ICTAC 2008. ICTAC 2008. Lecture Notes in Computer Science, vol 5160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85762-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-85762-4_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85761-7
Online ISBN: 978-3-540-85762-4
eBook Packages: Computer ScienceComputer Science (R0)