Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Computational Capacity of Parallel Communicating Finite Automata

  • Conference paper
Developments in Language Theory (DLT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5257))

Included in the following conference series:

  • 722 Accesses

Abstract

Systems of parallel finite automata communicating by states are investigated. We consider deterministic and nondeterministic devices and distinguish four working modes. It is known that systems in the most general mode are as powerful as one-way multihead finite automata. Here we solve some open problems on the computational capacity of systems working in the remaining modes. In particular, it is shown that deterministic returning and non-returning devices are equivalent, and that there are languages which are accepted by deterministic returning and centralized systems but cannot be accepted by deterministic non-returning centralized systems. Furthermore, we show that nondeterministic centralized systems are strictly more powerful than their deterministic variants. Finally, incomparability with the class of (deterministic) (linear) context-free languages as well as the Church-Rosser languages is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30, 323–342 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Buda, A.: Multiprocessor automata. Inform. Process. Lett. 25, 257–261 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Choudhary, A., Krithivasan, K., Mitrana, V.: Returning and non-returning parallel communicating finite automata are equivalent. RAIRO Inform. Théor. 41, 137–145 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Grammatical Approach to Distribution and Cooperation. Gordon and Breach, Yverdon (1994)

    Google Scholar 

  5. Ďuriš, P., Jurdziński, T., Kutyłowski, M., Loryś, K.: Power of cooperation and multihead finite systems. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 896–907. Springer, Heidelberg (1998)

    Google Scholar 

  6. Harrison, M.A., Ibarra, O.H.: Multi-tape and multi-head pushdown automata. Inform. Control 13, 433–470 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ibarra, O.H.: On two-way multihead automata. J. Comput. System Sci. 7, 28–36 (1973)

    MATH  MathSciNet  Google Scholar 

  8. Ibarra, O.H.: A note on semilinear sets and bounded-reversal multihead pushdown automata. Inform. Process. Lett. 3, 25–28 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jurdziński, T.: The Boolean closure of growing context-sensitive languages. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 248–259. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Klemm, R.: Systems of communicating finite state machines as a distributed alternative to finite state machines. Phd thesis, Pennsylvania State University (1996)

    Google Scholar 

  11. Martín-Vide, C., Mateescu, A., Mitrana, V.: Parallel finite automata systems communicating by states. Int. J. Found. Comput. Sci. 13, 733–749 (2002)

    Article  MATH  Google Scholar 

  12. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. ACM 35, 324–344 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10, 388–394 (1966)

    Article  MATH  Google Scholar 

  14. Wagner, K., Wechsung, G.: Computational Complexity. Reidel, Dordrecht (1986)

    Google Scholar 

  15. Yao, A.C., Rivest, R.L.: k + 1 heads are better than k. J. ACM 25, 337–340 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masami Ito Masafumi Toyama

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bordihn, H., Kutrib, M., Malcher, A. (2008). On the Computational Capacity of Parallel Communicating Finite Automata. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85780-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85780-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85779-2

  • Online ISBN: 978-3-540-85780-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics