Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the State Complexity of Complements, Stars, and Reversals of Regular Languages

  • Conference paper
Developments in Language Theory (DLT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5257))

Included in the following conference series:

  • 780 Accesses

Abstract

We examine the deterministic and nondeterministic state complexity of complements, stars, and reversals of regular languages. Our results are as follows:

  1. 1

    The nondeterministic state complexity of the complement of an n-state NFA language over a five-letter alphabet may reach each value in the range from logn to 2n.

  2. 1

    The state complexity of the star (reversal) of an n-state DFA language over a growing alphabet may reach each value in the range from 1 to \(\frac{3}{4}2^n\) (from logn to 2n, respectively).

  3. 1

    The nondeterministic state complexity of the star (reversal) of an n-state NFA binary language may reach each value in the range from 1 to n + 1 (from n − 1 to n + 1, respectively).

We also obtain some partial results on the nondeterministic state complexity of the complements of binary regular languages. As a bonus, we get an exponential number of values that are non-magic, which improves a similar result of Geffert (Proc. 7th DCFS, Como, Italy, 23–37).

Research supported by the VEGA grant 2/6089/26.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berman, P., Lingas, A.: On the complexity of regular languages in terms of finite automata. Technical Report 304, Polish Academy of Sciences (1977)

    Google Scholar 

  2. Birget, J.C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185–190 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birget, J.C.: Partial orders on words, minimal elements of regular languages, and state complexity. Theoret. Comput. Sci. 119, 267–291 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dassow, J., Stiebe, R.: Nonterminal complexity of some operations on context-free languages. In: Geffert, V., Pighizzini, G. (eds.) 9th International Workshop on Descriptional Complexity of Formal Systems, pp. 162–169. P. J. Šafárik University of Košice, Slovakia (2007)

    Google Scholar 

  5. Geffert, V. (Non)determinism and the size of one-way finite automata. In: Mereghetti, C., Palano, B., Pighizzini, G., Wotschke, D. (eds.) 7th International Workshop on Descriptional Complexity of Formal Systems, pp. 23–37. University of Milano, Italy (2005)

    Google Scholar 

  6. Geffert, V.: Magic numbers in the state hierarchy of finite automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 412–423. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inform. Process. Lett. 59, 75–77 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Internat. J. Found. Comput. Sci. 14, 1087–1102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages and descriptional complexity. In: Mereghetti, C., Palano, B., Pighizzini, G., Wotschke, D. (eds.) 7th International Workshop on Descriptional Complexity of Formal Systems, pp. 170–181. University of Milano, Italy (2005)

    Google Scholar 

  10. Hromkovič, J.: Descriptional complexity of finite automata: Concepts and open problems. J. Autom. Lang. Comb. 7, 519–531 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237, 485–494 (2000); Preliminary version In:Bozapalidis, S. (ed.) 3rd International Conference on Developments in Language Theory. Aristotle University of Thessaloniki (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need 2n − α deterministic states. Theoret. Comput. Sci. 301, 451–462 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jirásková, G.: Note on minimal finite automata. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 421–431. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Jirásková, G.: State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330, 287–298 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation. Internat. J. Found. Comput. Sci. 16, 511–529 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jirásek, J., Jirásková, G., Szabari, A.: Deterministic blow-ups of minimal nondeterministic finite automata over a fixed alphabet. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 254–265. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: 10th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, pp. 275–286 (1978)

    Google Scholar 

  18. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company, Boston (1997)

    Google Scholar 

  19. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 2, vol. I, pp. 41–110. Springer, Heidelberg (1997)

    Google Scholar 

  20. Yu, S.: A renaissance of automata theory? Bull. Eur. Assoc. Theor. Comput. Sci. 72, 270–272 (2000)

    Google Scholar 

  21. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zijl, L.: Magic numbers for symmetric difference NFAs. Internat. J. Found. Comput. Sci. 16, 1027–1038 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masami Ito Masafumi Toyama

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jirásková, G. (2008). On the State Complexity of Complements, Stars, and Reversals of Regular Languages. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85780-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85780-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85779-2

  • Online ISBN: 978-3-540-85780-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics