Abstract
In this paper we study the non-deterministic communication complexity of regular languages. We show that a regular language has either constant or at least logarithmic non-deterministic communication complexity. We prove several linear lower bounds which we know cover a wide range of regular languages with linear complexity. Furthermore we find evidence that previous techniques (Tesson and Thérien 2005) for proving linear lower bounds, for instance in deterministic and probabilistic models, do not work in the non-deterministic setting.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ada, A.: Non-deterministic communication complexity of regular languages. Master’s thesis (2008)
Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory (preliminary version). In: FOCS 1986: Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science, pp. 337–347 (1986)
Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45(2), 204–232 (1992)
Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for Lovasz-Schrijver systems and beyond follow from multiparty communication complexity. SIAM Journal on Computing 37(3), 845–869 (2007)
Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc., Orlando (1974)
Grolmusz, V.: Separating the communication complexities of MOD m and MOD p circuits. In: IEEE Symposium on Foundations of Computer Science, pp. 278–287 (1992)
Halstenberg, B., Reischuk, R.: On different modes of communication. In: STOC 1988: Proceedings of the twentieth annual ACM symposium on Theory of computing, pp. 162–172. ACM, New York (1988)
Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational Complexity 1, 113–129 (1991)
Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)
Pin, J.-E.: A variety theorem without complementation. Russian Mathematics (Izvestija vuzov.Matematika) 39, 80–90 (1995)
Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of formal languages, ch. 10, vol. 1, pp. 679–746. Springer, Heidelberg (1997)
Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 348–359. Springer, Heidelberg (1995)
Raymond, J.-F., Tesson, P., Thérien, D.: An algebraic approach to communication complexity. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 29–40. Springer, Heidelberg (1998)
Tesson, P., Thérien, D.: Complete classifications for the communication complexity of regular languages. Theory Comput. Syst. 38(2), 135–159 (2005)
Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences 43(3), 441–466 (1991)
Yao, A.C.-C.: Some complexity questions related to distributive computing (pre- liminary report). In: STOC 1979: Proceedings of the eleventh annual ACM symposium on Theory of computing, pp. 209–213. ACM Press, New York (1979)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ada, A. (2008). On the Non-deterministic Communication Complexity of Regular Languages. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85780-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-85780-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85779-2
Online ISBN: 978-3-540-85780-8
eBook Packages: Computer ScienceComputer Science (R0)