Abstract
Frequent Itemsets (FI) Mining is one of the most researched areas of data mining. When some new transactions are appended, deleted or modified in a dataset, updating FI is a nontrivial task since such updates may invalidate existing FI or introduce new ones. In this paper a novel algorithm suitable for FI mining in dynamic datasets named Incremental Compressed Arrays is presented. In the experiments, our algorithm was compared against some algorithms as Eclat, PatriciaMine and FP-growth when new transactions are added or deleted.
Chapter PDF
Similar content being viewed by others
References
Agrawal, R., Shrikant, R.: Fast Algorithms for Mining Association Rules. In: Proceedings of the 20th VLDB Conference, pp. 487–499 (1994)
Pietracaprina, A., Zandolin, D.: Mining Frequent Itemsets using Patricia Tries. In: Proceedings of the ICDM, Workshop on Frequent Itemset Mining Implementations, Melbourne, Florida, USA (2003)
A C++ Frequent Itemset Mining Template Library, http://www.cs.bme.hu/~bodon/en/index.html
Cheung, D., Han, J., Ng, V., Wong, C.Y.: Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. In: Proceedings of the 12th Intl. Conf. on Data Engineering (1996)
Cheung, D., Lee, S., Kao, B.: A General Incremental Technique for Maintaining Discovered Association Rules. In: Proceedings of the 15th Intl. Conf. on Database Systems for Advanced Applications (1997)
Zaki, M., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast Discovery of Association Rules. Technical Report 651, The University of Rochester, New York, USA (1997)
Veloso, A., Meira Jr., W., de Carvalho, M.B., Possas, B., Parthasarathy, S., Zaki, M.: Mining Frequent Itemsets in Evolving Databases. In: Proceedings of the 2nd SIAM Intl. Conf. on Data Mining, Arlington, USA (2002)
Veloso, A., Gusmão, W., Meira Jr., W., de Carvalho, M.B., Parthasarathy, S., Zaki, M.: Parallel, Incremental and Interactive Mining for Frequent Itemsets in Evolving Databases. In: Intl. Workshop on High Performance Data Mining: Pervasive and Data Stream Mining (2003)
Cheung, W., Zaiane, O.R.: Incremental mining of frequent patterns without candidate generation or support constraint. In: Proceedings of the Seventh IEEE International Database Engineering and Applications Symposium, pp. 111–116 (2003)
Leung, C.K., Quamrul, I.K., Hoque, T.: CanTree: A Tree Structure for Efficient Incremental Mining of Frequent Patterns. In: Proceedings of the Fifth IEEE International Conference on Data Mining (2005)
Hai, T.H., Shi, L.Z.: A New Method for Incremental Updating Frequent Patterns Mining. In: Proceedings of the Second International Conference on Innovative Computing, Informatio and Control, p. 561 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hernández-León, R., Hernández-Palancar, J., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F. (2008). A Novel Incremental Algorithm for Frequent Itemsets Mining in Dynamic Datasets. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2008. Lecture Notes in Computer Science, vol 5197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85920-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-85920-8_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85919-2
Online ISBN: 978-3-540-85920-8
eBook Packages: Computer ScienceComputer Science (R0)