Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 15))

Included in the following conference series:

Abstract

Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altam, E.I., Macro, G., Varetto, F.: Corporate Distress Diagnosis: Comparison Using Linear Discriminant Analysis and Neural Networks. J. Ban. Fin. 18, 505–529 (1994)

    Article  Google Scholar 

  2. De Andre, J., Landajo, M., Lorca, P.: Forecasting Business Profitability by Using Classification Techniques: a Comparative Analysis Based on a Spanish Case. Eur. J. Oper. Res. 167(2), 518–542 (2005)

    Article  Google Scholar 

  3. Au, W.H., Chan, K.C.C.: Mining Fuzzy Association Rules in a Bank-account Database. IEEE Trans. Fuzzy Syst. 11, 238–248 (2001)

    Article  Google Scholar 

  4. Chang, P.C., Liu, C.H.: A TSK type Fuzzy Rule Based System for Stock Price Prediction. Expert Syst. Appl. 34(1), 135–144 (2008)

    Article  MathSciNet  Google Scholar 

  5. Chang, P.C., Liu, C.H., Wang, Y.W.: A Hybrid Model by Clustering and Evolving Fuzzy Rules for Sale Forecasting in Printed Circuit Board Industry. Decis. Support Syst. 42(3), 1254–1269 (2005)

    Article  Google Scholar 

  6. Chen, C.H., Lin, C.J., Lin, C.T.: An Efficient Quantum Neuro-fuzzy Classifier Based on Fuzzy Entropy and Compensatory Operation. Soft Computing 12, 567–583 (2008)

    Article  MATH  Google Scholar 

  7. Chen, M.S., Han, J., Yu, P.S.: Data Mining: An Overview from a Database Perspective. IEEE Trans. Knowl. Data Eng. 8(6), 866–883 (1996)

    Article  Google Scholar 

  8. Devijer, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, Englewood Cliffs (1982)

    Google Scholar 

  9. Greco, S., Matarazzo, B., Slowinski, R.: Rough Sets Theory for Multicriteria Decision Analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  11. Kao, Y.T., Zahara, E., Kao, I.W.: A Hybridized Approach to Data Clustering. Expert Syst. Appl. 34, 1754–1762 (2008)

    Article  Google Scholar 

  12. Kosko, B.: Neural Network and Fuzzy Systems. Prentice-Hall, Englewood Cliffs (1992)

    Google Scholar 

  13. Krzanowski, W.J., Marriott, F.H.: Multivariate Analysis: Classification, Covariance Structures and Repeated Measurements. Amold, London (1998)

    Google Scholar 

  14. Langley, P., Iba, W., Thompson, K.: An Analysis of Bayesian Classifiers. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 223–228. AAAI Press, San Jose (1992)

    Google Scholar 

  15. Lee, K.C., Oh, S.B.: An Intelligent Approach to Time Series Identification by a Neural Network-driven Decision Tree Classifier. Decis. Support Syst. 17, 183–197 (1996)

    Article  Google Scholar 

  16. Linde, Y., Buzo, A., Gray, R.M.: An Algorithm for Vector Quantizer Design. IEEE Trans. Commun. 28(l), 84–95 (1980)

    Article  Google Scholar 

  17. Murty, M.N., Jain, A.K.: Knowledge-based Clustering Scheme for Collection Management and Retrieval of Library Books. Pattern Recognit. 28, 946–964 (1995)

    Article  Google Scholar 

  18. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Google Scholar 

  19. Shiu, S.C.K., Sun, C.H., Wang, X.Z., Yeung, D.S.: Maintaining Case-based Reasoning Systems Using Fuzzy Decision Trees. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 285–296. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Sorensen, E.H., Miller, K.L., Ooi, C.K.: The Decision Tree Approach to Stock Selection. J. Portf. Manage., 42–45 (2000)

    Google Scholar 

  21. Wang, J.S., Lee, C.S., George: Self-adaptive Neuro-fuzzy Inference Systems for Classification Applications. IEEE Trans. Fuzzy Syst. 10(6), 790–802 (2002)

    Article  Google Scholar 

  22. Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

  23. Zhang, J., Wang, Y.: A Rough Margin Based Support Vector Machine. Inf. Sci. 178(9), 2204–2214 (2008)

    Article  Google Scholar 

  24. Jin, B., Tang, Y.C., Zhang, Y.-Q.: Support Vector Machines with Genetic Fuzzy Feature Transformation for Biomedical Data Classification. Inf. Sci. 177(2), 476–489 (2007)

    Article  Google Scholar 

  25. Delivopoulos, E., Theocharis, J.B.: A Modified PNN Algorithm with Optimal PD Modeling Using the Orthogonal Least Squares Method. Inf. Sci. 168(3), 133–170 (2004)

    MATH  MathSciNet  Google Scholar 

  26. Carvalho, D.R., Freitas, A.A.: A hybrid decision tree/genetic algorithm method for data mining. Inf. Sci. 163(1-3), 13–35 (2004)

    Article  Google Scholar 

  27. Zhang, Y., Bhattacharyya, S.: Genetic Programming in Classifying Large-scale Data: An Ensemble Method. Inf. Sci. 163(1-3), 85–101 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, PC., Fan, CY., Wang, YW. (2008). Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2008. Communications in Computer and Information Science, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85930-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85930-7_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85929-1

  • Online ISBN: 978-3-540-85930-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics