Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Framework for Hybrid Tractability Results in Boolean Weighted Constraint Satisfaction Problems

  • Conference paper
Principles and Practice of Constraint Programming (CP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5202))

Abstract

Many tasks in automated reasoning can be modeled as weighted constraint satisfaction problems over Boolean variables (Boolean WCSPs). Tractable classes of such problems have traditionally been identified by exploiting either: (a) the topology of the associated constraint network, or (b) the structure of the weighted constraints. In this paper, we introduce the notion of a constraint composite graph (CCG) associated with a given (Boolean) WCSP. The CCG provides a unifying framework for characterizing/exploiting both the graphical structure of the constraint network as well as the structure of the weighted constraints. We show that a given (Boolean) WCSP can be reduced to the problem of computing the minimum weighted vertex cover for its associated CCG; and we establish the following two important results: (1) “the CCG of a given Boolean WCSP has the same treewidth as its associated constraint network,” and (2) “many classes of Boolean WCSPs that are tractable by virtue of the structure of their weighted constraints have associated CCGs that are bipartite in nature.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Billionnet, A., Minoux, M.: Maximizing a Supermodular Pseudo-Boolean Function: A Polynomial Algorithm for Supermodular Cubic Functions. Disc. Appl. Math. (1985)

    Google Scholar 

  2. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-Based CSPs and Valued CSPs: Basic Properties and Comparison. Over-Constrained Systems (1996)

    Google Scholar 

  3. Boros, E., Hammer, P.: Pseudo-Boolean Optimization. Disc. Appl. Math (2002)

    Google Scholar 

  4. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  6. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications (2001)

    Google Scholar 

  7. Dechter, R.: Constraint Networks (Survey). Encyclopedia of Artificial Intelligence (1992)

    Google Scholar 

  8. Do, M., Benton, J., van den Briel, M., Kambhampati, S.: Planning with Goal Utility Dependencies. In: IJCAI 2007 (2007)

    Google Scholar 

  9. Hochbaum, D.: Efficient Bounds for the Stable Set, Vertex Cover and Set Packing Problems. Disc. Appl. Math. 6 (1983)

    Google Scholar 

  10. Kolmogorov, V.: Primal-Dual Algorithm for Convex Markov Random Fields. Microsoft Tech. Rep. MSR-TR-2005-117 (2005)

    Google Scholar 

  11. Kolmogorov, V., Zabih, R.: What Energy Functions can be Minimized via Graph Cuts? Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)

    Article  Google Scholar 

  12. Kumar, T.K.S.: Lifting Techniques for Weighted Constraint Satisfaction Problems. In: Tenth International Symposium on Artificial Intelligence and Mathematics (ISAIM 2008) (2008)

    Google Scholar 

  13. Mak, W., Wong, D.: A Fast Hypergraph Min-Cut Algorithm for Circuit Partitioning. VLSI Journal 30(1), 1–11 (2000)

    Article  MATH  Google Scholar 

  14. Micali, S., Vazirani, V.: An \(O(\sqrt{|V|}|E|)\) Algorithm for Finding Maximum Matching in General Graphs. In: FOCS 1980 (1980)

    Google Scholar 

  15. Rhys, J.: A Selection Problem of Shared Fixed Costs and Network Flows. Management Sci. 17(3), 200–207 (1970)

    Article  MATH  Google Scholar 

  16. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter J. Stuckey

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, T.K.S. (2008). A Framework for Hybrid Tractability Results in Boolean Weighted Constraint Satisfaction Problems. In: Stuckey, P.J. (eds) Principles and Practice of Constraint Programming. CP 2008. Lecture Notes in Computer Science, vol 5202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85958-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85958-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85957-4

  • Online ISBN: 978-3-540-85958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics