Abstract
We propose a new method to segment long-axis cardiac MR images acquired with a late-enhancement protocol. Detecting the myocardium boundaries is difficult in these images because healthy myocardium appears dark while the intensity of enhanced areas ranges from gray to white, depending on the myocardial damage. In this context, geometrical template deformation, alternated with the update of a damaged tissue map, allows us to include abnormal myocardium parts in the final segmentation. The template and map are initialized using short-axis images and the deformation parameters are adapted according to the type of enhancement pattern. Good segmentation results are obtained on a database of real pathologic heart images presenting various types of abnormal myocardium tissues.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Mitchell, S.C., et al.: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans. Med. Imag. 20(5), 415–423 (2001)
Kaus, M.R., et al.: Automated segmentation of the left ventricle in cardiac MRI. Medical Image Analysis 8(3), 245–254 (2004)
Niessen, W.J., et al.: Geodesic deformable models for medical image analysis. IEEE Trans. Med. Imag. 17(4), 634–641 (1998)
Paragios, N.: A variational approach for the segmentation of the left ventricle in cardiac image analysis. International Journal of Computer Vision 50(3), 345–362 (2002)
Jolly, M.P.: Automatic segmentation of the left ventricle in cardiac MR and CT images. International Journal of Computer Vision 70(2), 151–163 (2006)
Noble, N.M.I., et al.: The automatic identification of hibernating myocardium. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 890–898. Springer, Heidelberg (2004)
Heiberg, E., et al.: Semi-automatic quantification of myocardial infarction from delayed contrast enhanced magnetic resonance imaging. Scandinavian Cardiovascular Journal 39(5), 267–275 (2005)
Dikici, E., et al.: Quantification of delayed enhancement MR images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 250–257. Springer, Heidelberg (2004)
Ciofolo, C., et al.: Automatic myocardium segmentation in late-enhancement MRI. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), pp. 225–228 (2008)
Williams, D.J., Shah, M.: A fast algorithm for active contours and curvature estimation. Computer Vision, Graphics and Image Processing: Image Understanding 55(1), 14–26 (1992)
Hautvast, G., et al.: Automatic contour propagation in cine cardiac magnetic resonance images. IEEE Trans. Med. Imag. 25(11), 1472–1482 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ciofolo, C., Fradkin, M. (2008). Segmentation of Pathologic Hearts in Long-Axis Late-Enhancement MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. MICCAI 2008. Lecture Notes in Computer Science, vol 5241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85988-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-85988-8_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85987-1
Online ISBN: 978-3-540-85988-8
eBook Packages: Computer ScienceComputer Science (R0)