Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Preliminary Investigation of the Impact of Gaussian Versus t-Copula for Data Perturbation

  • Conference paper
Privacy in Statistical Databases (PSD 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5262))

Included in the following conference series:

Abstract

In this paper, we provide a preliminary investigation of t-copulas for perturbing numerical confidential variables. A perturbation approach using Gaussian copulas has been proposed earlier. However, one of the problems with the Gaussian copulas is that it does not preserve tail dependence. In this investigation, we show that the t-copula can be used effectively to provide all the benefits that a Gaussian copula provides and, in addition, maintain tail dependence as well. We illustrate this approach using two examples. We hope to perform a comprehensive investigation of this approach in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arslan, O.: Family of Multivariate Generalized t Distributions. Journal of Multivariate Analysis 89, 329–337 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burridge, J.: Information Preserving Statistical Obfuscation. Statistics and Computing 13, 321–327 (2003)

    Article  MathSciNet  Google Scholar 

  3. Clemen, R.T., Reilly, T.: Correlations and Copulas for Decision and Risk Analysis. Management Science 45, 208–224 (1999)

    Article  Google Scholar 

  4. Demarta, S., McNeil, A.J.: The t Copula and Related Copulas. International Statistical Review 73, 111–129 (2005)

    MATH  Google Scholar 

  5. Little, R.J.A.: Statistical Analysis of Masked Data. Journal of Official Statistics 9, 407–426 (1993)

    Google Scholar 

  6. Muralidhar, K., Sarathy, R.: A Theoretical Basis for Perturbation Methods. Statistics and Computing 13, 329–335 (2003)

    Article  MathSciNet  Google Scholar 

  7. Nelsen, R.B.: An Introduction to Copulas. Springer, New York (1999)

    MATH  Google Scholar 

  8. Reiter, J.P.: Simultaneous Use of Multiple Imputation for Missing Data and Disclosure Limitation. Survey Methodology 27, 235–242 (2004)

    MathSciNet  Google Scholar 

  9. Rubin, D.B.: Discussion: Statistical Disclosure Limitation. Journal of Official Statistics 9, 462–468 (1993)

    Google Scholar 

  10. Sarathy, R., Muralidhar, K., Parsa, R.: Perturbing Nonnormal Confidential Attributes: The Copula Approach. Management Science 48, 1613–1627 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Josep Domingo-Ferrer Yücel Saygın

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trottini, M., Muralidhar, K., Sarathy, R. (2008). A Preliminary Investigation of the Impact of Gaussian Versus t-Copula for Data Perturbation. In: Domingo-Ferrer, J., Saygın, Y. (eds) Privacy in Statistical Databases. PSD 2008. Lecture Notes in Computer Science, vol 5262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87471-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87471-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87470-6

  • Online ISBN: 978-3-540-87471-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics