Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Grouping Genetic Algorithm Using Linear Linkage Encoding for Bin Packing

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

Linear Linkage Encoding (LLE) is a representation method proposed for grouping problems. It has already been used in solving data clustering, graph coloring and timetabling problems based on multi-objective genetic algorithms. In this study, this novel encoding scheme is investigated on bin packing again using a genetic algorithm. Bin packing benchmark problem instances are used to compare the performance of traditional recombination operators and custom made LLE crossover operators which are hybridized with parametrized placement heuristics. The results denote that LLE is a viable candidate for bin packing problem whenever appropriate genetic operators are chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. Principles and Practice of Constraint Programming, 73–87 (1999)

    Google Scholar 

  2. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: a survey., 46–93 (1997)

    Google Scholar 

  3. Crawford, J., Ginsberg, M.L., Luck, E., Roy, A.: Symmetry-breaking predicates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S. (eds.) KR 1996: Principles of Knowledge Representation and Reasoning, pp. 148–159. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  4. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  5. Dosa, G.: The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD ( I ) ≤ 11/9 OPT ( I ). In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 1–11. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Novel clustering approach that employs genetic algorithm with new representation scheme and multiple objectives. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2, 5–30 (1996)

    Article  Google Scholar 

  8. Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley and Sons, Chichester (1998)

    Google Scholar 

  9. Falkenauer, E., Delchambre, A.: A genetic algorithm for bin packing and line balancing. In: Proc. of the IEEE 1992 Int. Conf. on Robotics and Automation, Nice, France, pp. 1186–1192 (1992)

    Google Scholar 

  10. Glover, F.: Tabu search, part 1. ORSA Journal on Computing 1, 190–206 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  12. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Korkmaz, E.E., Du, J., Alhajj, R., Barker, K.: Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering. Intelligent Data Analysis 10(2), 163–182 (2006)

    Google Scholar 

  15. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematic 28(1), 59–70 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ozcan, E.: Memes, Self-generation and Nurse Rostering. In: PATAT 2006. LNCS, vol. 3867, pp. 85–104. Springer, Heidelberg (2007)

    Google Scholar 

  17. Ozcan, E., Alkan, A.: A Memetic Algorithm for Solving a Timetabling Problem: An Incremental Strategy. In: Baptiste, P., Kendall, G., Kordon, A.M., Sourd, F. (eds.) Proc. of the 3rd Multidisciplinary Int. Conf. On Scheduling: Theory and Applications, pp. 394–401 (2007)

    Google Scholar 

  18. Ozcan, E., Bilgin, B., Korkmaz, E.E.: A Comprehensive Analysis of Hyper-heuristics. Intelligent Data Analysis 12(1), 3–23 (2008)

    Google Scholar 

  19. Ozcan, E., Onbasioglu, E.: Memetic Algorithms for Parallel Code Optimization. International Journal of Parallel Programming 35(1), 33–61 (2007)

    Article  Google Scholar 

  20. Radcliffe, N.J.: Formal analysis and random respectful recombination. In: Belew, R.K., Booker, L.B. (eds.) Proc. of the 4th Int. Conf. on GAs, pp. 222–229 (1991)

    Google Scholar 

  21. Ulker, O., Ozcan, E., Korkmaz, E.E.: Linear Linkage Encoding in Grouping Problems: Applications on Graph Coloring and Timetabling. In: Proc. of the 6th Int. Conf. on the Practice and Theory of Automated Timetabling, pp. 303–319 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ülker, Ö., Korkmaz, E.E., Özcan, E. (2008). A Grouping Genetic Algorithm Using Linear Linkage Encoding for Bin Packing. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_113

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_113

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics