Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Steady-State Genetic Algorithm with Resampling for Noisy Inventory Control

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

Noisy fitness functions occur in many practical applications of evolutionary computation. A standard technique for solving these problems is fitness resampling but this may be inefficient or need a large population, and combined with elitism it may overvalue chromosomes or reduce genetic diversity. We describe a simple new resampling technique called Greedy Average Sampling for steady-state genetic algorithms such as GENITOR. It requires an extra runtime parameter to be tuned, but does not need a large population or assumptions on noise distributions. In experiments on a well-known Inventory Control problem it performed a large number of samples on the best chromosomes yet only a small number on average, and was more effective than four other tested techniques.

S.A. Tarim and B. Hnich are supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. R. Rossi is supported by Science Foundation Ireland under Grant No. 03/CE3/I405 as part of the Centre for Telecommunications Value-Chain-Driven Research (CTVR) and Grant No. 05/IN/I886.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aizawa, A., Wah, B.: Scheduling of Genetic Algorithms in a Noisy Environment. Evol. Comput. 2(2), 97–122 (1994)

    Article  Google Scholar 

  2. Arnold, D.V., Beyer, H.-G.: Local Performance of the (1+1)-ES in a Noisy Environment. IEEE Trans. Evolutionary Computation 6(1), 30–41 (2002)

    Article  MathSciNet  Google Scholar 

  3. Beielstein, T., Markon, S.: Threshold Selection, Hypothesis Tests, and DOE Methods. In: Congress on Evolutionary Computation, pp. 777–782. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  4. Beyer, H.-G.: Evolutionary Algorithms in Noisy Environments: Theoretical Issues and Guidelines for Practice. Computer Methods in Applied Mechanics and Engineering 186(2–4), 239–267 (2000)

    Article  MATH  Google Scholar 

  5. Branke, J., Schmidt, C., Schmeck, H.: Efficient Fitness Estimation in Noisy Environments. In: Genetic and Evolutionary Computation Conference, pp. 243–250. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  6. Bui, L.T., Abbass, H.A., Essam, D.: Fitness Inheritance for Noisy Evolutionary Multi-Objective Optimization. In: Genetic and Evolutionary Computation Conference, Washington DC, USA. ACM Press, New York (2005)

    Google Scholar 

  7. de Croon, G., van Dartel, M.F., Postma, E.O.: Evolutionary Learning Outperforms Reinforcement Learning on Non-Markovian Tasks. In: Workshop on Memory and Learning Mechanisms in Autonomous Robots, 8th European Conference on Artificial Life, Canterbury, Kent, UK (2005)

    Google Scholar 

  8. Darwen, P.J.: Computationally Intensive and Noisy Tasks: Coevolutionary Learning and Temporal Difference Learning on Backgammon. Congress on Evolutionary Computation (2000)

    Google Scholar 

  9. Fitzpatrick, J.M., Grefenstette, J.J.: Genetic Algorithms in Noisy Environments. Machine Learning 3, 101–120 (1988)

    Google Scholar 

  10. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic Algorithms, Noise, and the Sizing of Populations. Complex Systems 6, 333–362 (1992)

    MATH  Google Scholar 

  11. Gopalakrishnan, G., Minsker, B.S., Goldberg, D.: Optimal Sampling in a Noisy Genetic Algorithm for Risk-Based Remediation Design. In: World Water and Environmental Resources Congress, ASCE (2001)

    Google Scholar 

  12. Hughes, E.J.: Evolutionary Multi-objective Ranking with Uncertainty and Noise. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Jin, Y., Branke, J.: Evolutionary Optimization in Uncertain Environments — a Survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  14. Miller, B.L.: Noise, Sampling, and Efficient Genetic Algorithms. PhD thesis, University of Illinois, Urbana-Champaign (1997)

    Google Scholar 

  15. Miller, B.L., Goldberg, D.E.: Optimal Sampling for Genetic Algorithms. Intelligent Engineering Systems Through Artificial Neural Networks 6, 291–298 (1996)

    Google Scholar 

  16. Moriarty, D.E., Schultz, A.C., Grefenstette, J.J.: Evolutionary Algorithms for Reinforcement Learning. Journal of Artificial Intelligence Research 11, 241–276 (1999)

    MATH  Google Scholar 

  17. Di Pietro, A., While, L., Barone, L.: Applying Evolutionary Algorithms to Problems With Noisy, Time-Consuming Fitness Functions. In: Congress on Evolutionary Computation, pp. 1254–1261. IEEE, Los Alamitos (2004)

    Google Scholar 

  18. Sano, Y., Kita, H.: Optimization of Noisy Fitness Functions by Means of Genetic Algorithms Using History of Search With Test of Estimation. In: Congress on Evolutionary Computation, pp. 360–365. IEEE, Los Alamitos (2002)

    Google Scholar 

  19. Schmidt, C., Branke, J., Chick, S.E.: Integrating Techniques from Statistical Ranking into Evolutionary Algorithms. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 752–763. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Silver, E.A., Pyke, D.F., Peterson, R.: Inventory Management and Production Planning and Scheduling. John-Wiley and Sons, New York (1998)

    Google Scholar 

  21. Smalley, J.B., Minsker, B., Goldberg, D.E.: Risk-Based In Situ Bioremediation Design Using a Noisy Genetic Algorithm. Water Resour. Res. 36(10), 3043–3052 (2000)

    Article  Google Scholar 

  22. Stagge, P.: Averaging Efficiently in the Presence of Noise. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 188–197. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Stroud, P.D.: Kalman-Extended Genetic Algorithm for Search in Nonstationary Environments with Noisy Fitness Functions. IEEE Transactions on Evolutionary Computation 5(1), 66–77 (2001)

    Article  Google Scholar 

  24. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  25. Then, T.W., Chong, E.K.P.: Genetic Algorithms in Noisy Environments. In: 9th IEEE International Symposium on Intelligent Control, Columbus, Ohio, USA, pp. 225–230 (1994)

    Google Scholar 

  26. Whitley, D., Kauth, J.: GENITOR: A Different Genetic Algorithm. In: Rocky Mountain Conference on Artificial Intelligence, Denver, CO, USA, pp. 118–130 (1988)

    Google Scholar 

  27. Wu, J., Zheng, C., Chien, C.C., Zheng, L.: A Comparative Study of Monte Carlo Simple Genetic Algorithm and Noisy Genetic Algorithm for Cost-Effective Sampling Network Design Under Uncertainty. Advances in Water Resources 29, 899–911 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prestwich, S., Tarim, S.A., Rossi, R., Hnich, B. (2008). A Steady-State Genetic Algorithm with Resampling for Noisy Inventory Control. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics