Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Use of Projected Gradients for Constrained Multiobjective Optimization Problems

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Abstract

Recent works have shown how hybrid variants of gradient-based methods and evolutionary algorithms perform better than a pure evolutionary method both for single-objective and multiobjective optimization. This same idea has been used with Evolutionary Multiobjective Optimization (EMO), obtaining also very promising results. In most cases, gradient information is used as part of the mutation operator (and only for unconstrained MOPs), in order to move every generated point to the exact Pareto front. In our approach, we use the Karush-Kuhn-Tucker optimality condition for constrained optimization problems to combine the information provided by the gradient vector of each objective function and the gradient vectors of constraint functions to obtain a feasible movement direction in those points near the border. In our approach, gradients of the objective functions will be approximated using quadratic regressions, trying to avoid local optima. The proposed algorithm is able to converge on several nonlinear constrained multiobjective optimization problems obtained from a benchmark, consuming few objective function evaluations (between 150 and 1000). Our results indicate that our proposed scheme may produce a significant reduction in the computational cost, while producing results of good quality, when it is incorporated into a hybrid MOEA or when it is used to seed an EMO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Binh, T.T., Korn, U.: MOBES: A multiobjective evolution strategy for constrained optimization problems. In: The Third International Conference on Genetic Algorithms (Mendel 1997), Brno, Czech Republic, pp. 176–182 (1997)

    Google Scholar 

  2. Coello Coello, C.A., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  3. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming. In: Classics Appl. Math., vol. 4, SIAM, Philadelphia (1990); Reprint of the 1968 original

    Google Scholar 

  4. Fliege, J., Svaiter, B.: Steepest Descent Methods for Multicriteria Optimization. Mathematical Methods of Operations Research 51(3), 479–494 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldstein, A.A.: Convex programming in Hilbert Space. Bulletin of the American Mathematical Society 70, 709–710 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jiménez, F., Verdegay, J.L., Gómez-Skarmeta, A.F.: Evolutionary Techniques for Constrained Multiobjective Optimization Problems. In: Wu, A.S. (ed.) Proc. of GECCO, Orlando, Florida, pp. 115–116 (1999)

    Google Scholar 

  7. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Levitin, E.S., Polyak, B.T.: Constrained Minimization Problems. USSR Computational Mathematics and Mathematical Physics 6, 1–50 (1966)

    Article  Google Scholar 

  9. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MATH  MathSciNet  Google Scholar 

  10. Molina, J., Laguna, M., Marti, R., Caballero, R.: SSPMO: A Scatter Tabu Search Procedure for Non-Linear Multiobjective Optimization. INFORMS Journal on Computing 19(1), 91–100 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Osyczka, A., Kundu, S.: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. Structural Optimization 10, 94–99 (1995)

    Article  Google Scholar 

  12. Schaffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector optimization problems. Journal of Opt. Theory and Applications 114(1), 209–222 (2002)

    Article  MathSciNet  Google Scholar 

  13. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    Article  Google Scholar 

  14. Tanaka, M., Watanabe, H., Furukawa, Y., Tanino, T.: GA-Based Decision Support System for Multicriteria Optimization. In: Proc. of the International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 1556–1561. IEEE, Piscataway (1995)

    Google Scholar 

  15. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Phd. Thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernandez-Diaz, A.G., Coello, C.A.C., Santana-Quintero, L.V., Perez, F., Molina, J., Caballero, R. (2008). On the Use of Projected Gradients for Constrained Multiobjective Optimization Problems. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics