Abstract
We address the fundamental question: what does it mean for data in a database to be of high quality? We motivate our discussion with examples, where traditional views on data quality are found to be unsatisfactory. Our work is founded on the premise that data values are primarily linguistic signs that convey meaning from their producer to their user through senses and referents. In this setting, data quality issues arise when discrepancies occur during this communication. We sketch a theory of senses for individual values in a relational table based on its semantics expressed using some ontology. We use this to offer a compositional approach, where data quality is expressed in terms of a variety of primitive relationships among values and their senses. We evaluate our approach by accounting for quality attributes in other frameworks proposed in the literature. This exercise allows us to (i) reveal and differentiate multiple, sometimes conflicting, definitions of a quality attribute, (ii) accommodate competing views on how these attributes are related, and (iii) point to possible new definitions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agmon, N., Ahituv, N.: Assessing Data Reliability in an Information Systems. Journal of Management Information Systems 4(2), 34–44 (1987)
An, Y., Borgida, A., Mylopoulos, J.: Discovering the Semantics of Relational Tables through Mappings. In: Spaccapietra, S. (ed.) Journal on Data Semantics VII. LNCS, vol. 4244, pp. 1–32. Springer, Heidelberg (2006)
Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques. Springer, Heidelberg (2006)
Bovee, M.: A Conceptual Framework and Belief-Function Approach to Assessing Overall Information Quality International. Journal of Intelligent Systems 18(1), 51–74 (2003)
Gackowski, Z.J.: Logical interdependence of data/information quality dimensions - A purpose focused view on IQ. In: Proc. of the 2004 International Conference on Information Quality (2004)
Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Data Integration in Data Warehousing. Journal of Cooperative Information Systems 10(3), 237–271 (2001)
Fitting, M.: Intensional Logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Spring 2007), http://plato.stanford.edu/archives/spr2007/entries/logic-intensional/
Grice, H.P.: Meaning. The Philosophical Review 66, 377–388 (1957)
Jeusfeld, M.A., Quix, C., Jarke, M.: Design and analysis of quality information for data warehouses. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 349–362. Springer, Heidelberg (1998)
Jiang, L., Borgida, A., Topaloglou, T., Mylopoulos, J.: Data Quality by Design: A Goal-Oriented Approach. In: Proc. of the 12th International Conference on Information Quality (2007)
Jiang, L., Topaloglou, T., Borgida, A., Mylopoulos, J.: Goal-Oriented Conceptual Database Design. In: Proc. of the 15h IEEE Int. Requirements Engineering Conference, pp. 195–204 (2007)
Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press, Cambridge (2000)
Liu, L., Chi, L.N.: Evolutional Data Quality: A Theory-Specific View. In: Proc. of the 2002 International Conference on Information Quality (2002)
Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.: WonderWeb Deliverable D17 (2002)
Missier, P., Preece, A.D., Embury, S.M., Jin, B., Greenwood, M., Stead, D., Brown, A.: Managing Information Quality in e-Science: A Case Study in Proteomics. In: ER 2005 Workshops, pp. 423–432 (2005)
Naumann, F.: Do metadata models meet IQ requirements? In: Proc. of the 1999 International Conference on Information Quality, Cambridge, MA, pp. 99–114 (1999)
Peirce, C.S.: Collected Papers. In: Peirce, C.S., Hartshorne, C., Weiss, P., Burks, A. (eds.), vol. 8. Harvard University Press, Cambridge (1931–1958)
Pernici, B., Scannapieco, M.: Data Quality in Web Information Systems. In: Proc of the 21st int. Conference on Conceptual Modeling, pp. 397–413. Springer, London (2002)
Pipino, L.L., Lee, Y.W., Wang, R.: Data quality assessment. Comm. of ACM 45(4), 211–218 (2002)
Price, G.: On the communication of measurement results. Measurement 29, 293–305 (2001)
Price, R., Shanks, G.: A Semiotic Information Quality Framework. In: Proc. IFIP International Conference on Decision Support Systems, Prato (2004)
Redman, T.C.: Data Quality for the Information Age. Artech House, Boston (1996)
Wang, R.Y., Reddy, M.P., Kon, H.B.: Toward quality data: an attribute-based approach. Decision. Support Systems 13(3–4), 349–372 (1995)
Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems 12(4), 5–33 (1996)
Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Communications of ACM 39(11), 86–95 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jiang, L., Borgida, A., Mylopoulos, J. (2008). Towards a Compositional Semantic Account of Data Quality Attributes. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds) Conceptual Modeling - ER 2008. ER 2008. Lecture Notes in Computer Science, vol 5231. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87877-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-87877-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87876-6
Online ISBN: 978-3-540-87877-3
eBook Packages: Computer ScienceComputer Science (R0)