Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Travel Speed Prediction Using Fuzzy Reasoning

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5314))

Included in the following conference series:

Abstract

The speed prediction algorithm introduced in this paper takes advantage of fuzzy systems that are insensitive to random noise, robust to uncertainties, and transparent to interpretation. The proposed algorithm for outlier detection selects the potential outliers based on the density rather than the deviation adopted in conventional approaches. To evaluate the developed system, a seris of experiments conducted on the real world data. The result of the comparison performed to evaluate the outliler detection method proposed reveals the benefit from the consideration of density. The cross validation results indicate the effectiveness of the fuzzy inference system developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chung, E., Warita, H., Bajwa, S., Kuwahara, M.: Travel time prediction: issues and benefits. In: 10th World Conference on Transportation Research (2004)

    Google Scholar 

  2. Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Transactions on Intelligent Transportation Systems 5(4), 276–281 (2004)

    Article  Google Scholar 

  3. Asce, S.I.M., Asce, H.A.D.M.: Performance Evaluation of Short-Term Time-Series Traffic Prediction Model. Journal of Transportation Engineering 128, 490–498 (2002)

    Article  Google Scholar 

  4. Asce, H.A.D.M., Asce, L.A.H.F.: Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results. Journal of Transportation Engineering 129, 664 (2003)

    Article  Google Scholar 

  5. Rice, J., van Zwet, E.: A simple and effective method for predicting travel times on freeways. IEEE Transactions on Intelligent Transportation Systems 5(3), 200–207 (2004)

    Article  Google Scholar 

  6. Bajwa, S., Chung, E., Kuwahara, M.: Performance evaluation of an adaptive travel time prediction model. In: IEEE Conference on Intelligent Transportation Systems, pp. 1000–1005 (2005)

    Google Scholar 

  7. Innamaa, S.: Short-Term Prediction of Travel Time using Neural Networks on an Interurban Highway. Transportation 32(6), 649–669 (2005)

    Article  Google Scholar 

  8. van Lint, J.W.C., Hoogendoorn, S.P., van Zuylen, H.J.: Freeway Travel Time Prediction with State-Space Neural Networks: Modeling State-Space Dynamics with Recurrent Neural Networks. Transportation Research Record 1811(1), 30–39 (2002)

    Article  Google Scholar 

  9. Quek, C., Pasquier, M., Lim, B.B.S.: POP-TRAFFIC: a novel fuzzy neural approach to road traffic analysis and prediction. IEEE Transactions on Intelligent Transportation Systems 7(2), 133–146 (2006)

    Article  Google Scholar 

  10. Xiao, H., Sun, H., Ran, B., Oh, Y.: Fuzzy-Neural Network Traffic Prediction Framework with Wavelet Decomposition. Transportation Research Record 1836(1), 16–20 (2003)

    Article  Google Scholar 

  11. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1(1) (1993)

    Google Scholar 

  12. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, vol. 2(12), pp. 1137–1143 (1995)

    Google Scholar 

  13. Rousseeuw, P.J., Ruts, I., Tukey, J.W.: The Bagplot: A Bivariate Boxplot. The American Statistician 53(4) (1999)

    Google Scholar 

  14. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recognition Letters 24(9-10), 1641–1650 (2003)

    Article  MATH  Google Scholar 

  15. Fu, L., Medico, E.: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8, 3 (2007)

    Article  Google Scholar 

  16. Wu, S., Er, M.J., Gao, Y.: A fast approach for automatic generation of fuzzy rules bygeneralized dynamic fuzzy neural networks. IEEE Transactions on Fuzzy Systems 9(4), 578–594 (2001)

    Article  Google Scholar 

  17. Casillas, J., Carse, B., Bull, L.: Fuzzy-XCS: A Michigan Genetic Fuzzy System. IEEE Transactions on Fuzzy Systems 15(4), 536–550 (2007)

    Article  Google Scholar 

  18. Papadakis, S.E., Theocharis, J.B.: A GA-based fuzzy modeling approach for generating TSK models. Fuzzy Sets and Systems 131(2), 121–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mitra, S., Konwar, K.M., Pal, S.K.: Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation. IEEE Transactions on Systems, Man and Cybernetics, Part C 32(4), 328–339 (2002)

    Article  Google Scholar 

  20. Kim, M.W., Lee, J.G., Min, C.: Efficient fuzzy rule generation based on fuzzy decision tree for data mining. In: The 1999 IEEE International Fuzzy Systems Conference, FUZZ-IEEE 1999 (1999)

    Google Scholar 

  21. Abonyi, J., Szeifert, F.: Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters 24(14), 2195–2207 (2003)

    Article  MATH  Google Scholar 

  22. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Liu, H., Beullens, P., Brown, D. (2008). Travel Speed Prediction Using Fuzzy Reasoning. In: Xiong, C., Huang, Y., Xiong, Y., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2008. Lecture Notes in Computer Science(), vol 5314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88513-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88513-9_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88512-2

  • Online ISBN: 978-3-540-88513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics