Summary
If one wants to study the global dynamics of a given system, key com ponents are the stable or unstable manifolds of invariant sets, such as equilibria and periodic orbits. Even in the simplest examples, these global manifolds must be approximated by means of numerical computations. We discuss an algorithm for computing global manifolds of vector fields that is decidedly geometric in nature. A two-dimensional manifold is built up as a collection of approximate geodesic level sets, i.e. topological smooth circles. Our method allows to visualize the resulting surface by making use of the geodesic parametrization.
As we show with the example of the Lorenz system, this is a big advantage when one wants to understand the geometry of complicated two-dimensional global man ifolds. More precisely, for the standard system parameters, the origin of the Lorenz system has a two-dimensional stable manifold — called the Lorenz manifold — and the other two equilibria each have a two-dimensional unstable manifold. The inter sections of these manifolds in the three-dimensional phase space form heteroclinic connections from the nontrivial equilibria to the origin. A parameter-dependent visualization of these manifolds clarifies the transition to chaos in the Lorenz system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abraham, R.H., Shaw, C.D.: Dynamics — The geometry of behavior, Part three: global behavior. Aerial Press, Santa Cruz (1985)
Doedel, E.J.: AUTO, a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer., 30, 265–384 (1981)
Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Yu.A., Sandstede, B., Wang, X.J.: AUTO97: Continuation and bifurcation software for ordi nary differential equations. available viahttp://cmvl.cs.concordia.ca/auto/(1997) (accessed November 2006)
Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global bifurcations of the Lorenz manifold. Nonlinearity, 19(12), 2947–2972 (2006)
England, J.P., Krauskopf, B., Osinga, H.M.: Computing two-dimensional global invariant manifolds in slow-fast systems. Int. J. Bifurcation and Chaos, 17(3), 805–822 (2007)
Ghrist, R., Holmes, P.J., Sullivan, M.C.: Knots and links in three-dimensional flows. Lecture Notes in Mathematics 1654, Springer, Berlin (1997)
Gilmore, R., Lefranc, M.: The topology of chaos: Alice in stretch and squeeze-land. Wiley-Interscience, New York (2004)
Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. 2nd Printing, Springer-Verlag, New York (1986)
Hobson, D.: An efficient method for computing invariant manifolds of planar maps. J. Comput. Phys. 104(1), 14–22 (1993)
Krauskopf, B., Osinga, H.M.: Computing geodesic level sets on global (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Sys., 4(2), 546–569 (2003)
Krauskopf, B., Osinga, H.M.: The Lorenz manifold as a collection of geodesic level sets. Nonlinearity 17(1), C1–C6 (2004)
Krauskopf, B., Osinga, H.M.: Computing invariant manifolds via the continua tion of orbit segments. In: Krauskopf, B., Osinga, H.M., Gal´an-Vioque, J. (Eds.): Numerical continuation methods for dynamical systems. Springer Complexity: Understanding Complex Systems, Springer, Berlin, pp. 117–154 (2007)
Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifurcation and Chaos 15(3), 763– 791 (2005)
Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmospheric Sci., 20, 130–141 (1963)
Osinga, H.M., Krauskopf, B.: Visualizing the structure of chaos in the Lorenz system. Computers and Graphics, 26(5), 815–823 (2002)
Osinga, H.M., Krauskopf, B.: Crocheting the Lorenz manifold. Math. Intelli gencer, 26(4), 25–37 (2004)
Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, New York (1982)
Perelló, C.: Intertwining invariant manifolds and Lorenz attractor. In: Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979). Lecture Notes in Math. 819, Springer, Berlin, pp. 375–378 (1979)
Phillips, M., Levy, S., Munzner, T.: Geomview: An Interactive Geometry Viewer. Notices of the American Mathematical Society, 40: 985–988 (1993); This soft ware and the accompanying manual are available at http://www.geom.uiuc. edu/ (accessed November 2006)
Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Appl. Math. Sci. No. 41, Springer, New York (1982)
Strogatz, S.: Nonlinear Dynamics and Chaos. Addison Wesley, Boston, MA (1994)
Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math., 328(12), 1197–1202 (1999)
Viana, M.: What's new on Lorenz strange attractors? Math. Intelligencer, 22(3), 6–19 (2000)
Williams, R.F.: The universal templates of Ghrist. Bull. AMS, 35(2), 145–156 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Krauskopf, B., Osinga, H.M., Doedel, E.J. (2009). Visualizing global manifolds during the transition to chaos in the Lorenz system. In: Hege, HC., Polthier, K., Scheuermann, G. (eds) Topology-Based Methods in Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88606-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-88606-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88605-1
Online ISBN: 978-3-540-88606-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)