Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Visualizing global manifolds during the transition to chaos in the Lorenz system

  • Chapter
Topology-Based Methods in Visualization II

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1622 Accesses

Summary

If one wants to study the global dynamics of a given system, key com ponents are the stable or unstable manifolds of invariant sets, such as equilibria and periodic orbits. Even in the simplest examples, these global manifolds must be approximated by means of numerical computations. We discuss an algorithm for computing global manifolds of vector fields that is decidedly geometric in nature. A two-dimensional manifold is built up as a collection of approximate geodesic level sets, i.e. topological smooth circles. Our method allows to visualize the resulting surface by making use of the geodesic parametrization.

As we show with the example of the Lorenz system, this is a big advantage when one wants to understand the geometry of complicated two-dimensional global man ifolds. More precisely, for the standard system parameters, the origin of the Lorenz system has a two-dimensional stable manifold — called the Lorenz manifold — and the other two equilibria each have a two-dimensional unstable manifold. The inter sections of these manifolds in the three-dimensional phase space form heteroclinic connections from the nontrivial equilibria to the origin. A parameter-dependent visualization of these manifolds clarifies the transition to chaos in the Lorenz system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, R.H., Shaw, C.D.: Dynamics — The geometry of behavior, Part three: global behavior. Aerial Press, Santa Cruz (1985)

    Google Scholar 

  2. Doedel, E.J.: AUTO, a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer., 30, 265–384 (1981)

    MathSciNet  Google Scholar 

  3. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Yu.A., Sandstede, B., Wang, X.J.: AUTO97: Continuation and bifurcation software for ordi nary differential equations. available viahttp://cmvl.cs.concordia.ca/auto/(1997) (accessed November 2006)

  4. Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global bifurcations of the Lorenz manifold. Nonlinearity, 19(12), 2947–2972 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. England, J.P., Krauskopf, B., Osinga, H.M.: Computing two-dimensional global invariant manifolds in slow-fast systems. Int. J. Bifurcation and Chaos, 17(3), 805–822 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ghrist, R., Holmes, P.J., Sullivan, M.C.: Knots and links in three-dimensional flows. Lecture Notes in Mathematics 1654, Springer, Berlin (1997)

    Google Scholar 

  7. Gilmore, R., Lefranc, M.: The topology of chaos: Alice in stretch and squeeze-land. Wiley-Interscience, New York (2004)

    Google Scholar 

  8. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. 2nd Printing, Springer-Verlag, New York (1986)

    Google Scholar 

  9. Hobson, D.: An efficient method for computing invariant manifolds of planar maps. J. Comput. Phys. 104(1), 14–22 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Krauskopf, B., Osinga, H.M.: Computing geodesic level sets on global (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Sys., 4(2), 546–569 (2003)

    Article  MathSciNet  Google Scholar 

  11. Krauskopf, B., Osinga, H.M.: The Lorenz manifold as a collection of geodesic level sets. Nonlinearity 17(1), C1–C6 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Krauskopf, B., Osinga, H.M.: Computing invariant manifolds via the continua tion of orbit segments. In: Krauskopf, B., Osinga, H.M., Gal´an-Vioque, J. (Eds.): Numerical continuation methods for dynamical systems. Springer Complexity: Understanding Complex Systems, Springer, Berlin, pp. 117–154 (2007)

    Google Scholar 

  13. Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifurcation and Chaos 15(3), 763– 791 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmospheric Sci., 20, 130–141 (1963)

    Article  Google Scholar 

  15. Osinga, H.M., Krauskopf, B.: Visualizing the structure of chaos in the Lorenz system. Computers and Graphics, 26(5), 815–823 (2002)

    Article  Google Scholar 

  16. Osinga, H.M., Krauskopf, B.: Crocheting the Lorenz manifold. Math. Intelli gencer, 26(4), 25–37 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, New York (1982)

    MATH  Google Scholar 

  18. Perelló, C.: Intertwining invariant manifolds and Lorenz attractor. In: Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979). Lecture Notes in Math. 819, Springer, Berlin, pp. 375–378 (1979)

    Google Scholar 

  19. Phillips, M., Levy, S., Munzner, T.: Geomview: An Interactive Geometry Viewer. Notices of the American Mathematical Society, 40: 985–988 (1993); This soft ware and the accompanying manual are available at http://www.geom.uiuc. edu/ (accessed November 2006)

    Google Scholar 

  20. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Appl. Math. Sci. No. 41, Springer, New York (1982)

    MATH  Google Scholar 

  21. Strogatz, S.: Nonlinear Dynamics and Chaos. Addison Wesley, Boston, MA (1994)

    Google Scholar 

  22. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math., 328(12), 1197–1202 (1999)

    MATH  Google Scholar 

  23. Viana, M.: What's new on Lorenz strange attractors? Math. Intelligencer, 22(3), 6–19 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Williams, R.F.: The universal templates of Ghrist. Bull. AMS, 35(2), 145–156 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krauskopf, B., Osinga, H.M., Doedel, E.J. (2009). Visualizing global manifolds during the transition to chaos in the Lorenz system. In: Hege, HC., Polthier, K., Scheuermann, G. (eds) Topology-Based Methods in Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88606-8_9

Download citation

Publish with us

Policies and ethics