Abstract
This paper describes a novel nonlinear modeling approach by on-line clustering, fuzzy rules and support vector machine. Structure identification is realized by an on-line clustering method and fuzzy support vector machines, the fuzzy rules are generated automatically. Time-varying learning rates are applied for updating the membership functions of the fuzzy rules. Finally, the upper bounds of the modeling errors are proven.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angelov, P.: An approach for fuzzy rule-base adaptation using on-line clustering. International Journal of Approximate Reasoning 35(3), 275–289 (2004)
Brown, M., Harris, C.J.: Neurofuzzy Aadaptive Modelling and Control. Prentice Hall, New York (1994)
Chen, S., Billings, S.A.: Neural networks for nonlinear system modelling and identification. Int. J. Control 56(2), 319–346 (1992)
Chiang, J.-H., Hao, P.-Y.: Suuport Vector Learning Mechanism for Fuzzy Rule-Based Modeling: A New Approach. IEEE Transactions on Fuzzy Systems 12(1) (2004)
Chiu, S.L.: Fuzzy Model Identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems 2(3) (1994)
Lin, C.-F., Wang, S.-D.: Fuzzy Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 464–471 (2002)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge Univ. Press, Cambridge (2000)
Hong-Sen, Xu, D.: An Approach to Estimating Product Desing Time Based on Fuzzy v-Support Vector Machine. IEEE Transactions on Neural Networks 18(3), 721–731 (2007)
Juang, C.F.: Combination of on-line clustering and Q-value based GA for reinforcement fuzzy system design. IEEE Transactions on Fuzzy Systems 13(3), 289–302 (2005)
Jang, J.S.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23, 665–685 (1993)
Leski, J.M.: TSK-Fuzzy Modeling Based on ε-Insensitive Learning. IEEE Trans. on Fuzzy System 13(2), 181–193 (2005)
Lin, C.-T., Lee, C.-.S.G.: Neuralnetwork-based fuzzy logic control and decision system. IEEE Trans. Comput. 40, 1320–1336 (1991)
Mitra, S., Hayashi, Y.: Neuro–fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks 11(3), 748–769 (2000)
Mueller, K.-R., Mika, S., Rasch, G., Tsuda, K., Scholkopf, B.: An Introduction to Kernel-Based Learning Algorithm. IEEE Trans. Neural Networks 12(2) (2001)
Narendra, K.S., Mukhopadhyay, S.: Adaptive Control Using Neural Networks and Approximate Models. IEEE Trans. Neural Networks 8(3), 475–485 (1997)
Rivals, I., Personnaz, L.: Neural-network construction and selection in nonlinear modeling. IEEE Transactions on Neural Networks 14(4), 804–820 (2003)
Tzafestas, S.G., Zikidis, K.C.: NeuroFAST: On-line neuro-fuzzy ART-based structure and parameter learning TSK model. IEEE Transactions on Systems, Man and Cybernetics, Part B 31(5), 797–803 (2001)
Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1994)
Wang, C.H., Liu, H.L., Lin, C.T.: Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm. IEEE Trans. Syst., Man, Cybern. B 31, 467–475 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tovar, J.C., Yu, W. (2008). On-Line Modeling Via Fuzzy Support Vector Machines. In: Gelbukh, A., Morales, E.F. (eds) MICAI 2008: Advances in Artificial Intelligence. MICAI 2008. Lecture Notes in Computer Science(), vol 5317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88636-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-88636-5_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88635-8
Online ISBN: 978-3-540-88636-5
eBook Packages: Computer ScienceComputer Science (R0)