Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On-Line Modeling Via Fuzzy Support Vector Machines

  • Conference paper
MICAI 2008: Advances in Artificial Intelligence (MICAI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5317))

Included in the following conference series:

  • 2125 Accesses

Abstract

This paper describes a novel nonlinear modeling approach by on-line clustering, fuzzy rules and support vector machine. Structure identification is realized by an on-line clustering method and fuzzy support vector machines, the fuzzy rules are generated automatically. Time-varying learning rates are applied for updating the membership functions of the fuzzy rules. Finally, the upper bounds of the modeling errors are proven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelov, P.: An approach for fuzzy rule-base adaptation using on-line clustering. International Journal of Approximate Reasoning 35(3), 275–289 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brown, M., Harris, C.J.: Neurofuzzy Aadaptive Modelling and Control. Prentice Hall, New York (1994)

    Google Scholar 

  3. Chen, S., Billings, S.A.: Neural networks for nonlinear system modelling and identification. Int. J. Control 56(2), 319–346 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiang, J.-H., Hao, P.-Y.: Suuport Vector Learning Mechanism for Fuzzy Rule-Based Modeling: A New Approach. IEEE Transactions on Fuzzy Systems 12(1) (2004)

    Google Scholar 

  5. Chiu, S.L.: Fuzzy Model Identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems 2(3) (1994)

    Google Scholar 

  6. Lin, C.-F., Wang, S.-D.: Fuzzy Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 464–471 (2002)

    Article  Google Scholar 

  7. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Hong-Sen, Xu, D.: An Approach to Estimating Product Desing Time Based on Fuzzy v-Support Vector Machine. IEEE Transactions on Neural Networks 18(3), 721–731 (2007)

    Article  Google Scholar 

  9. Juang, C.F.: Combination of on-line clustering and Q-value based GA for reinforcement fuzzy system design. IEEE Transactions on Fuzzy Systems 13(3), 289–302 (2005)

    Article  Google Scholar 

  10. Jang, J.S.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23, 665–685 (1993)

    Article  Google Scholar 

  11. Leski, J.M.: TSK-Fuzzy Modeling Based on ε-Insensitive Learning. IEEE Trans. on Fuzzy System 13(2), 181–193 (2005)

    Article  MathSciNet  Google Scholar 

  12. Lin, C.-T., Lee, C.-.S.G.: Neuralnetwork-based fuzzy logic control and decision system. IEEE Trans. Comput. 40, 1320–1336 (1991)

    Article  MathSciNet  Google Scholar 

  13. Mitra, S., Hayashi, Y.: Neuro–fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks 11(3), 748–769 (2000)

    Article  Google Scholar 

  14. Mueller, K.-R., Mika, S., Rasch, G., Tsuda, K., Scholkopf, B.: An Introduction to Kernel-Based Learning Algorithm. IEEE Trans. Neural Networks 12(2) (2001)

    Google Scholar 

  15. Narendra, K.S., Mukhopadhyay, S.: Adaptive Control Using Neural Networks and Approximate Models. IEEE Trans. Neural Networks 8(3), 475–485 (1997)

    Article  Google Scholar 

  16. Rivals, I., Personnaz, L.: Neural-network construction and selection in nonlinear modeling. IEEE Transactions on Neural Networks 14(4), 804–820 (2003)

    Article  MATH  Google Scholar 

  17. Tzafestas, S.G., Zikidis, K.C.: NeuroFAST: On-line neuro-fuzzy ART-based structure and parameter learning TSK model. IEEE Transactions on Systems, Man and Cybernetics, Part B 31(5), 797–803 (2001)

    Article  Google Scholar 

  18. Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  19. Wang, C.H., Liu, H.L., Lin, C.T.: Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm. IEEE Trans. Syst., Man, Cybern. B 31, 467–475 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tovar, J.C., Yu, W. (2008). On-Line Modeling Via Fuzzy Support Vector Machines. In: Gelbukh, A., Morales, E.F. (eds) MICAI 2008: Advances in Artificial Intelligence. MICAI 2008. Lecture Notes in Computer Science(), vol 5317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88636-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88636-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88635-8

  • Online ISBN: 978-3-540-88636-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics