Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Big Bang Big Crunch Optimization Method Based Fuzzy Model Inversion

  • Conference paper
MICAI 2008: Advances in Artificial Intelligence (MICAI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5317))

Included in the following conference series:

  • 2202 Accesses

Abstract

The inverse fuzzy model can be used as a controller in an open loop fashion to produce perfect control if there does not exist any disturbance or parameter variation in the system. In this paper, a new fuzzy model inversion technique that is based on an evolutionary search algorithm called Big Bang Big Crunch (BB-BC) optimization is introduced. Even though various fuzzy inversion methods can be found in literature, these methods are only applicable under certain conditions or limitations. On the other hand, there does not exist any limitation or condition for the new methodology presented here. In this new technique, the inverse fuzzy model control signal is generated iteratively as a consequence of an optimization operation. Since the BB-BC optimization algorithm has a high convergence speed and low computational time, the optimal inverse fuzzy model control signal is generated within each sampling time. The beneficial sides of the open loop control approach based on the proposed fuzzy model inversion technique are illustrated through two simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Economou, G., Morari, M., Palsson, B.: Internal model control. Extension to nonlinear systems. Ind. Eng. Chem. Process Des. Dev. 25, 403–411 (1986)

    Article  Google Scholar 

  2. Babuska, R.: Fuzzy Modeling for Control. Kluwer Academic Publishers, Boston (1998)

    Book  Google Scholar 

  3. Babuska, R., Sousa, J., Verbruggen, H.B.: Model Based Design of Fuzzy Control Systems. In: Proc. of the 3rd Europ. Congr. on 6rt. Techniques and Soft Computing EUFlT 1995, Aachen, Germany, pp. 837–841 (1995)

    Google Scholar 

  4. Baranyi, P., Korondi, P., Hashimoto, H., Wada, M.: Fuzzy Inversion and Rule Base Reduction. In: IEEE Int. Conf. on Intelligent Engineering Systems (IEEE INES 1997), Budapest, pp. 301–306 (1997)

    Google Scholar 

  5. Varkonyi-Koczy, A.R., Amos, A., Kovicshizy, T.: Genetic Algorithms in Fuzzy Model Inversion. In: IEEE International Fuzzy Systems Conference Proceedings, Seoul,Korea, August 22-25 (1999)

    Google Scholar 

  6. Varkonyi-Koczy, A.R., Péceli, G., Dobrowiecki, T.P., Kovácsházy, T.: Iterative Fuzzy Model Inversion. In: Proc. of the 1998 IEEE Int. Conference on Fuzzy Systems, FUZZ-IEEE 1998, Anchorage, Alaska, USA, May 5-9, vol. 1, pp. 561–566 (1998)

    Google Scholar 

  7. Boukezzoula, R., Galichet, S., Folloy, L.: Nonlinear Internal Model Control: Applicaation of Inverse Model Based Fuzzy Control. IEEE Transactions on Fuzzy Systems 11(6) (2003)

    Google Scholar 

  8. Boukezzoula, R., Galichet, S., Folloy, L.: Fuzzy Feedback Linearizing Controller and its Equivalence with the Fuzzy Nonlinear Internal Model Control Structure. International Journal of Applied Mathematics and Computer Science 17(2), 233–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abonyi, J., Andersen, H., Nagy, L., Szeifert, F.: Inverse Fuzzy-Process –Model Based Adaptive Control. Mathematics and Computers in Simulation 51(1-2), 119–132 (1999)

    Article  MathSciNet  Google Scholar 

  10. Fischer, M., Isermann, R.: Robust hybrid control based on inverse fuzzy process models. In: IEEE International conference on fuzzy systems, New Orleans, USA, pp. 1210–1216 (1996)

    Google Scholar 

  11. Erol, O.K., Eksin, I.: A new optimization method: Big Bang–Big Crunch. Advances in Engineering Software 37, 106–111 (2006)

    Article  Google Scholar 

  12. Kumbasar, T., Yeşil, E., Eksin, İ., Güzelkaya, M.: Inverse Fuzzy Model Control with Online Adaptation via Big Bang-Big Crunch Optimization. In: The 3rd International Symposium on Communications, Control and Signal Processing, ISCCSP, Malta (2008)

    Google Scholar 

  13. Agrawal, P., Lakshminarayan, S.: Tuning proportional-integral-derivative controllers using achievable performance indices. Ind. Eng. Chem. Res. 42, 5576–5582 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumbasar, T., Eksin, İ., Güzelkaya, M., Yeşil, E. (2008). Big Bang Big Crunch Optimization Method Based Fuzzy Model Inversion. In: Gelbukh, A., Morales, E.F. (eds) MICAI 2008: Advances in Artificial Intelligence. MICAI 2008. Lecture Notes in Computer Science(), vol 5317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88636-5_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88636-5_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88635-8

  • Online ISBN: 978-3-540-88636-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics