Abstract
In this paper we investigate an approach of constructing a 3D digital line by taking the integer points within an offset of a certain radius of the line. Alternatively, we also investigate digital lines obtained through a “pseudo-offset” defined by a parallelepiped enclosing the integer points around the line. We show that if the offset radius (resp. side of the parallelepiped section) is greater than \(\sqrt{3}\) (resp. 2\(\sqrt{3}\)), then the digital line is at least 1-connected. Extensive experiments show that the lines obtained feature satisfactory appearance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 65(1-3), 92–111 (2003)
Anton, F.: Voronoi diagrams of semi-algebraic sets, Ph.D. thesis, The University of British Columbia, Vancouver, British Columbia, Canada (January 2004)
Anton, F., Emiris, I., Mourrain, B., Teillaud, M.: The offset to an algebraic curve and an application to conics. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K., et al. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 683–696. Springer, Heidelberg (2005)
Arrondo, E., Sendra, J., Sendra, J.R.: Genus formula for generalized offset curves. J. Pure and Applied Algebra 136(3), 199–209 (1999)
Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and length estimation of 3D discrete curves. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 295–313. Springer, Heidelberg (2002)
Cohen-Or, D., Kaufman, A.: 3D Line voxelization and connectivity control. IEEE Computer Grpahics & Applications 17(6), 80–87 (1997)
Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)
Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets, Ph.D. thesis, Université Louis Pasteur, Strasbourg, France (1995)
Debled-Rennesson, I., Domenjoud, E., Jamet, D.: Arithmetic Discrete Parabolas. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 480–489. Springer, Heidelberg (2006)
Debled-Rennesson, I., Rémy, J.-L., Rouyer-Degli, J.: Linear segmentation of discrete curves into blurred segments. Discrete Applied Mathematics 151(1-3), 122–137 (2005)
Figueiredo, O., Reveillès, J.-P.: New results about 3D digital lines. In: Proc. Internat. Conference Vision Geometry V, SPIE, vol. 2826, pp. 98–108 (1996)
Fiorio, C., Jamet, D., Toutant, J.-L.: Discrete Circles: an Arithmetical Approach Based On Norms. In: Proc. Internat. Conference Vision-Geometry XIV, SPIE, vol. 6066, p. 60660C (2006)
Hoffmann, C.M., Vermeer, P.J.: Eliminating extraneous solutions for the sparse resultant and the mixed volume. J. Symbolic Geom. Appl. 1(1), 47–66 (1991)
Kim, C.E.: Three dimensional digital line segments. IEEE Transactions on Pattern Analysis and Machine Intellignece 5(2), 231–234 (1983)
Klette, R., Rosenfeld, A.: Digital Geometry – Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)
Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM 17(3), 146–160 (1970)
Rosenfeld, A., Klette, R.: Digital starightness – a review. Discrete Applied Mathematics 139(1-3), 197–230 (2004)
Toutant, J.-L.: Characterization of the closest discrete approximation of a line in the 3-dimensional space. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 618–627. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brimkov, V.E., Barneva, R.P., Brimkov, B., de Vieilleville, F. (2008). Offset Approach to Defining 3D Digital Lines. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_65
Download citation
DOI: https://doi.org/10.1007/978-3-540-89639-5_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89638-8
Online ISBN: 978-3-540-89639-5
eBook Packages: Computer ScienceComputer Science (R0)