Abstract
Scientific research has become increasingly interdisciplinary, and clear communication is fundamental when bringing together specialists from different areas of knowledge. This work aims at discussing the role of fully immersive virtual reality experience to facilitate interdisciplinary communication by utilising the Duke Immersive Virtual Environment (DiVE), a CAVE-like system, to explore the complex and high-resolution results from the Regional Atmospheric Modelling System-based Forest Large-Eddy Simulation (RAFLES) model coupled with the Ecosystem Demography model (ED2). VR exploration provided an intuitive environment to simultaneously analyse canopy structure and atmospheric turbulence and fluxes, attracting and engaging specialists from various backgrounds during the early stages of the data analysis. The VR environment facilitated exploration of large multivariate data with complex and not fully understood non-linear interactions in an intuitive and interactive way. This proved fundamental to formulate hypotheses about tree-scale atmosphere-canopy-structure interactions and define the most meaningful ways to display the results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Metzger, N., Zare, R.N.: Science policy - Interdisciplinary research: From belief to reality. Science 283(5402), 642–643 (1999)
Riva, G.: Applications of virtual environments in medicine. Methods Inf. Med. 42(5), 524–534 (2003)
Desmeulles, G., et al.: The virtual reality applied to biology understanding: The in virtuo experimentation. Expert Syst. Appl. 30(1), 82–92 (2006)
Ausburn, L.J., Ausburn, F.B.: Desktop virtual reality: A powerful new technology for teaching and research in industrial teacher education. Journal of Industrial Teacher Education 41(4), 33–58 (2004)
Smith, S.S., et al.: Experiences in using virtual reality in design and graphics classrooms. Int. J. Eng. Educ. 23(6), 1192–1198 (2007)
Bohrer, G.: Large eddy simulations of forest canopies for determination of biological dispersal by wind. In: Department of Civil and Environmental Engineering, p. 150, Duke University, Durham, NC (2007)
Bohrer, G., et al.: Effects of canopy heterogeneity, seed abscission, and inertia on wind-driven dispersal kernels of tree seeds. J. Ecol. 96, 569–580 (2008)
Dupont, S., Brunet, Y.: Simulation of turbulent flow in an urban forested park damaged by a windstorm. Bound. Layer. Meteor. 120(1), 133–161 (2006)
Dupont, S., Brunet, Y.: Edge flow and canopy structure: A large-eddy simulation study. Bound Layer Meteor. 126(1), 51–71 (2008)
Yue, W., et al.: Large-eddy simulations of plant canopy flows using plant-scale representation. Bound Layer Meteor. 124(2), 183–203 (2007)
Yue, W.S., et al.: A comparative quadrant analysis of turbulence in a plant canopy. Water Resour. Res. 43(5) (2007)
Yue, W., et al.: Turbulent kinetic energy budgets in a model canopy: comparisons between LES and wind-tunnel experiments. Environ. Fluid Mech. 8, 73–95 (2008)
Cruz-Neira, C., et al.: The CAVE - audio-visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992)
Visage Imaging. AMIRA (2008) (cited July 7, 2008), http://www.amiravis.com
Bergeron, T.: Synoptic meteorology - an historical review. Pure Appl. Geophys. 119(3), 443–473 (1981)
Hibbard, W.L., Santek, D.A.: The VIS-5D system for easy interactive visualization. In: Proceedings of Visualization 1990. IEEE CS Press, Los Alamitos (1990)
Hibbard, W.L., et al.: Interactive visualization of earth and space science computations. Computer 27(7), 65–72 (1994)
Mathematics and Computer Science Division Argonne National Laboratory. Cave5D Release 2.0 (2007) (cited June 30, 2008), http://www-unix.mcs.anl.gov /~mickelso/CAVE2.0.html
Johnson, S.G., Edwards, J.: Vis5d+ (2001) (cited June 30, 2008), http://vis5d.sourceforge.net/
Desert Research Institute. CAVCaM (2008) (cited July 9, 2008), http://www.cavcam.dri.edu/
Roswintiarti, O., Raman, S.: Three-dimensional simulations of the mean air transport during the 1997 forest fires in Kalimantan, Indonesia using a mesoscale numerical model. Pure Appl. Geophys. 160(1-2), 429–438 (2003)
Magsig, M.A., Snow, J.T.: Long-distance debris transport by tornadic thunderstorms. Part I: The 7 may 1995 supercell thunderstorm. Mon. Weather Rev. 126(6), 1430–1449 (1998)
Bramer, D.J., et al.: Linking interactive concept models into the Visual Geophysical Exploration Environment (VGEE). In: 13th Symposium on Education. American Meteorological Society, Seattle (2004)
Semeraro, D., et al.: Collaboration, analysis, and visualization of the future. In: 20th International conference on interactive information and processing system (IIPS) for meteorology, oceanography, and hydrology. American Meteorological Society, Seattle (2004)
Loth, E., et al.: A virtual reality technique for multi-phase flows. Int. J. Comput. Fluid Dyn. 18(3), 265–275 (2004)
Nichol, J., Wong, M.S.: Modeling urban environmental quality in a tropical city. Landsc. Urban Plan. 73(1), 49–58 (2005)
Sen, S.I., Day, A.M.: Modelling trees and their interaction with the environment: A survey. Comput. Graph.-UK 29(5), 805–817 (2005)
Pretzsch, H., et al.: Models for forest ecosystem management: A European perspective. Ann. Bot. 101(8), 1065–1087 (2008)
Van Haevre, W., Bekaert, P.: A simple but effective algorithm to model the competition of virtual plants for light and space. J. WSGC 11(3), 464–471 (2003)
Deussen, O., et al.: Interactive visualization of complex plant ecosystems. In: Proceedings of Visualization. IEEE, Los Alamitos (2002)
Seifert, S.: Visualisierung von waldlandschaften. Allgemeine Forstzeitschrift/Der Wald 61, 1170–1171 (2006)
Pielke, R.A., et al.: A Comprehensive meteorological modeling system - RAMS. Meteorol. Atmos. Phys. 49(1-4), 69–91 (1992)
Deardorff, J.W.: Stratocumulus-capped mixed layers derived from a 3-dimensional model. Bound Layer Meteor. 18(4), 495–527 (1980)
Bhushan, S., Warsi, Z.U.A.: Large eddy simulation of turbulent channel flow using an algebraic model. Int. J. Numer. Methods Fluids 49(5), 489–519 (2005)
Palace, M., et al.: Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties. Biotropica 40(2), 141–150 (2008)
Bohrer, G., et al.: A Virtual Canopy Generator (V-CaGe) for modeling complex heterogeneous forest canopies at high resolution Tellus 59(3), 566–576 (2007)
Medvigy, D., et al.: Mass conservation and atmospheric dynamics in the regional atmospheric modeling system (RAMS). Environ. Fluid Mech. 5(1-2), 109–134 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bohrer, G., Longo, M., Zielinski, D.J., Brady, R. (2008). VR Visualisation as an Interdisciplinary Collaborative Data Exploration Tool for Large Eddy Simulations of Biosphere-Atmosphere Interactions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_82
Download citation
DOI: https://doi.org/10.1007/978-3-540-89639-5_82
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89638-8
Online ISBN: 978-3-540-89639-5
eBook Packages: Computer ScienceComputer Science (R0)