Abstract
Effective pattern recognition requires understanding both statistical and structural aspects of the input, but in the past these have mostly been handled separately. Markov logic is a powerful new language that seamlessy combines the two. Models in Markov logic are sets of weighted formulas in first-order logic, interpreted as templates for features of Markov random fields. Most statistical and structural models in wide use are simple special cases of Markov logic. Learning algorithms for Markov logic make use of conditional likelihood, convex optimization, and inductive logic programming. Inference algorithms combine ideas from Markov chain Monte Carlo and satisfiability testing. Markov logic has been successfully applied to problems in information extraction, robot mapping, social network modeling, and others, and is the basis of the open-source Alchemy system.
Chapter PDF
Similar content being viewed by others
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Domingos, P. et al. (2008). Markov Logic: A Unifying Language for Structural and Statistical Pattern Recognition. In: da Vitoria Lobo, N., et al. Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2008. Lecture Notes in Computer Science, vol 5342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89689-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-89689-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89688-3
Online ISBN: 978-3-540-89689-0
eBook Packages: Computer ScienceComputer Science (R0)