Abstract
The topic of multimodal function optimization, where the aim is to locate more than one solution, has attracted a growing interest especially in the evolutionary computing research community. To experimentally evaluate the strengths and weaknesses of multimodal optimization algorithms, it is important to use test functions representing different characteristics and of various levels of difficulty. However, the available selection of multimodal test problems with multiple global optima is rather limited at the moment and no general framework exists. This paper describes our attempt in constructing a test function generator to allow the generation of easily tunable test functions. The aim is to provide a general and easily expandable environment for testing different methods of multimodal optimization. Several function families with different characteristics are included. The generator implements new parameterizable function families for generating desired landscapes and a selection of well known test functions from literature, which can be rotated and stretched. The module can be easily imported to any optimization algorithm implementation compatible with C programming language.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mahfoud, S.: A comparison of parallel and sequential niching methods. In: Proceedings of 6th International Conference on Genetic Algorithms, pp. 136–143 (1995)
De Jong, K.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)
Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Grefenstette, J. (ed.) Proc. of the Second International Conference on Genetic Algorithms, pp. 41–49 (1987)
Mahfoud, S.: Niching methods for genetic algorithms. PhD thesis, Urbana, IL, USA (1995)
Beasley, D., Bull, D., Martin, R.: A sequential niche technique for multimodal function optimization. Evolutionary Computation 1(2), 101–125 (1993)
Harik, G.: Finding multimodal solutions using restricted tournament selection. In: Eshelman, L. (ed.) Proc. of the Sixth International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann, San Francisco (1995)
Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proc. of the 3rd IEEE International Conference on Evolutionary Computation, pp. 798–803 (1996)
Li, J., Balazs, M., Parks, G., Clarkson, P.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)
Wolpert, D., Macready, W., William, G.: No free lunch theorems for search. Technical report, The Santa Fe Institute (1995)
Morrison, R., Jong, K.D.: A test problem generator for nonstationary evironments. In: Proceedings of the Congress of Evolutionary Computation, Piscataway, NJ, pp. 1843–1850. IEEE Press, Los Alamitos (1999)
Morrison, R.: Designing Evolutionary Algorithms for Dynamic Environments. Springer, Berlin (2004)
Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Norwell (2002)
Gaviano, M., Kvasov, D., Lera, D., Sergeyev, Y.: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Transactions on Mathematical Software 29(4), 469–480 (2003)
Michalewicz, Z., Deb, K., Schmidt, M., Stidsen, T.: Test-case generator for nonlinear continuous parameter optimization techniques. IEEE Trans. on Evol. Comput. 4, 197–215 (2000)
Gallagher, M., Yuan, B.: A general-purpose tunable landscape generator. IEEE Transactions on Evolutionary Computation 10, 590–603 (2006)
Singh, G., Deb, K.: Comparison of multi-modal optimization algorithms based on evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, pp. 1305–1312. ACM Press, New York (2006)
Hansen, N., Ostermeier, A.: Completely derandomized self adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)
Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)
Törn, A., Žilinskas, A. (eds.): Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)
Ursem, R.: Multinational evolutionary algorithms. In: Proceedings of Congress of Evolutionary Computation (CEC 1999), vol. 3. IEEE Press, Los Alamitos (1999)
Shir, O., Bäck, T.: Niche radius adaptation in the cma-es niching algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 142–151. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rönkkönen, J., Li, X., Kyrki, V., Lampinen, J. (2008). A Generator for Multimodal Test Functions with Multiple Global Optima. In: Li, X., et al. Simulated Evolution and Learning. SEAL 2008. Lecture Notes in Computer Science, vol 5361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89694-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-89694-4_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89693-7
Online ISBN: 978-3-540-89694-4
eBook Packages: Computer ScienceComputer Science (R0)